openwrt/target/linux/qualcommax/patches-6.1/0901-regulator-add-Qualcomm...

12145 lines
368 KiB
Diff

From c9df32c057e43e38c8113199e64f7a64f8d341df Mon Sep 17 00:00:00 2001
From: Robert Marko <robimarko@gmail.com>
Date: Mon, 11 Apr 2022 14:35:36 +0200
Subject: [PATCH] regulator: add Qualcomm CPR regulators
Allow building Qualcomm CPR regulators.
Signed-off-by: Robert Marko <robimarko@gmail.com>
---
drivers/regulator/Kconfig | 33 +
drivers/regulator/Makefile | 3 +
drivers/regulator/cpr3-npu-regulator.c | 695 +++
drivers/regulator/cpr3-regulator.c | 5111 +++++++++++++++++++++++
drivers/regulator/cpr3-regulator.h | 1211 ++++++
drivers/regulator/cpr3-util.c | 2750 ++++++++++++
drivers/regulator/cpr4-apss-regulator.c | 1819 ++++++++
include/soc/qcom/socinfo.h | 463 ++
8 files changed, 12085 insertions(+)
create mode 100644 drivers/regulator/cpr3-npu-regulator.c
create mode 100644 drivers/regulator/cpr3-regulator.c
create mode 100644 drivers/regulator/cpr3-regulator.h
create mode 100644 drivers/regulator/cpr3-util.c
create mode 100644 drivers/regulator/cpr4-apss-regulator.c
create mode 100644 include/soc/qcom/socinfo.h
--- a/drivers/regulator/Kconfig
+++ b/drivers/regulator/Kconfig
@@ -1524,4 +1524,37 @@ config REGULATOR_QCOM_LABIBB
boost regulator and IBB can be used as a negative boost regulator
for LCD display panel.
+config REGULATOR_CPR3
+ bool "QCOM CPR3 regulator core support"
+ help
+ This driver supports Core Power Reduction (CPR) version 3 controllers
+ which are used by some Qualcomm Technologies, Inc. SoCs to
+ manage important voltage regulators. CPR3 controllers are capable of
+ monitoring several ring oscillator sensing loops simultaneously. The
+ CPR3 controller informs software when the silicon conditions require
+ the supply voltage to be increased or decreased. On certain supply
+ rails, the CPR3 controller is able to propagate the voltage increase
+ or decrease requests all the way to the PMIC without software
+ involvement.
+
+config REGULATOR_CPR3_NPU
+ bool "QCOM CPR3 regulator for NPU"
+ depends on OF && REGULATOR_CPR3
+ help
+ This driver supports Qualcomm Technologies, Inc. NPU CPR3
+ regulator Which will always operate in open loop.
+
+config REGULATOR_CPR4_APSS
+ bool "QCOM CPR4 regulator for APSS"
+ depends on OF && REGULATOR_CPR3
+ help
+ This driver supports Qualcomm Technologies, Inc. APSS application
+ processor specific features including memory array power mux (APM)
+ switching, one CPR4 thread which monitor the two APSS clusters that
+ are both powered by a shared supply, hardware closed-loop auto
+ voltage stepping, voltage adjustments based on online core count,
+ voltage adjustments based on temperature readings, and voltage
+ adjustments for performance boost mode. This driver reads both initial
+ voltage and CPR target quotient values out of hardware fuses.
+
endif
--- a/drivers/regulator/Makefile
+++ b/drivers/regulator/Makefile
@@ -110,6 +110,9 @@ obj-$(CONFIG_REGULATOR_QCOM_RPMH) += qco
obj-$(CONFIG_REGULATOR_QCOM_SMD_RPM) += qcom_smd-regulator.o
obj-$(CONFIG_REGULATOR_QCOM_SPMI) += qcom_spmi-regulator.o
obj-$(CONFIG_REGULATOR_QCOM_USB_VBUS) += qcom_usb_vbus-regulator.o
+obj-$(CONFIG_REGULATOR_CPR3) += cpr3-regulator.o cpr3-util.o
+obj-$(CONFIG_REGULATOR_CPR3_NPU) += cpr3-npu-regulator.o
+obj-$(CONFIG_REGULATOR_CPR4_APSS) += cpr4-apss-regulator.o
obj-$(CONFIG_REGULATOR_PALMAS) += palmas-regulator.o
obj-$(CONFIG_REGULATOR_PCA9450) += pca9450-regulator.o
obj-$(CONFIG_REGULATOR_PF8X00) += pf8x00-regulator.o
--- /dev/null
+++ b/drivers/regulator/cpr3-npu-regulator.c
@@ -0,0 +1,695 @@
+/*
+ * Copyright (c) 2017, The Linux Foundation. All rights reserved.
+ *
+ * Permission to use, copy, modify, and/or distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ */
+
+#include <linux/err.h>
+#include <linux/platform_device.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/slab.h>
+#include <linux/thermal.h>
+
+#include "cpr3-regulator.h"
+
+#define IPQ807x_NPU_FUSE_CORNERS 2
+#define IPQ817x_NPU_FUSE_CORNERS 1
+#define IPQ807x_NPU_FUSE_STEP_VOLT 8000
+#define IPQ807x_NPU_VOLTAGE_FUSE_SIZE 6
+#define IPQ807x_NPU_CPR_CLOCK_RATE 19200000
+
+#define IPQ807x_NPU_CPR_TCSR_START 6
+#define IPQ807x_NPU_CPR_TCSR_END 7
+
+#define NPU_TSENS 5
+
+u32 g_valid_npu_fuse_count = IPQ807x_NPU_FUSE_CORNERS;
+/**
+ * struct cpr3_ipq807x_npu_fuses - NPU specific fuse data for IPQ807x
+ * @init_voltage: Initial (i.e. open-loop) voltage fuse parameter value
+ * for each fuse corner (raw, not converted to a voltage)
+ * This struct holds the values for all of the fuses read from memory.
+ */
+struct cpr3_ipq807x_npu_fuses {
+ u64 init_voltage[IPQ807x_NPU_FUSE_CORNERS];
+};
+
+/*
+ * Constants which define the name of each fuse corner.
+ */
+enum cpr3_ipq807x_npu_fuse_corner {
+ CPR3_IPQ807x_NPU_FUSE_CORNER_NOM = 0,
+ CPR3_IPQ807x_NPU_FUSE_CORNER_TURBO = 1,
+};
+
+static const char * const cpr3_ipq807x_npu_fuse_corner_name[] = {
+ [CPR3_IPQ807x_NPU_FUSE_CORNER_NOM] = "NOM",
+ [CPR3_IPQ807x_NPU_FUSE_CORNER_TURBO] = "TURBO",
+};
+
+/*
+ * IPQ807x NPU fuse parameter locations:
+ *
+ * Structs are organized with the following dimensions:
+ * Outer: 0 to 1 for fuse corners from lowest to highest corner
+ * Inner: large enough to hold the longest set of parameter segments which
+ * fully defines a fuse parameter, +1 (for NULL termination).
+ * Each segment corresponds to a contiguous group of bits from a
+ * single fuse row. These segments are concatentated together in
+ * order to form the full fuse parameter value. The segments for
+ * a given parameter may correspond to different fuse rows.
+ */
+static struct cpr3_fuse_param
+ipq807x_npu_init_voltage_param[IPQ807x_NPU_FUSE_CORNERS][2] = {
+ {{73, 22, 27}, {} },
+ {{73, 16, 21}, {} },
+};
+
+/*
+ * Open loop voltage fuse reference voltages in microvolts for IPQ807x
+ */
+static int
+ipq807x_npu_fuse_ref_volt [IPQ807x_NPU_FUSE_CORNERS] = {
+ 912000,
+ 992000,
+};
+
+/*
+ * IPQ9574 (Few parameters are changed, remaining are same as IPQ807x)
+ */
+#define IPQ9574_NPU_FUSE_CORNERS 2
+#define IPQ9574_NPU_FUSE_STEP_VOLT 10000
+#define IPQ9574_NPU_CPR_CLOCK_RATE 24000000
+
+/*
+ * fues parameters for IPQ9574
+ */
+static struct cpr3_fuse_param
+ipq9574_npu_init_voltage_param[IPQ9574_NPU_FUSE_CORNERS][2] = {
+ {{105, 12, 17}, {} },
+ {{105, 6, 11}, {} },
+};
+
+/*
+ * Open loop voltage fuse reference voltages in microvolts for IPQ9574
+ */
+static int
+ipq9574_npu_fuse_ref_volt [IPQ9574_NPU_FUSE_CORNERS] = {
+ 862500,
+ 987500,
+};
+
+struct cpr3_controller *g_ctrl;
+
+void cpr3_npu_temp_notify(int sensor, int temp, int low_notif)
+{
+ u32 prev_sensor_state;
+
+ if (sensor != NPU_TSENS)
+ return;
+
+ prev_sensor_state = g_ctrl->cur_sensor_state;
+ if (low_notif)
+ g_ctrl->cur_sensor_state |= BIT(sensor);
+ else
+ g_ctrl->cur_sensor_state &= ~BIT(sensor);
+
+ if (!prev_sensor_state && g_ctrl->cur_sensor_state)
+ cpr3_handle_temp_open_loop_adjustment(g_ctrl, true);
+ else if (prev_sensor_state && !g_ctrl->cur_sensor_state)
+ cpr3_handle_temp_open_loop_adjustment(g_ctrl, false);
+}
+
+/**
+ * cpr3_ipq807x_npu_read_fuse_data() - load NPU specific fuse parameter values
+ * @vreg: Pointer to the CPR3 regulator
+ *
+ * This function allocates a cpr3_ipq807x_npu_fuses struct, fills it with
+ * values read out of hardware fuses, and finally copies common fuse values
+ * into the CPR3 regulator struct.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_ipq807x_npu_read_fuse_data(struct cpr3_regulator *vreg)
+{
+ void __iomem *base = vreg->thread->ctrl->fuse_base;
+ struct cpr3_ipq807x_npu_fuses *fuse;
+ int i, rc;
+
+ fuse = devm_kzalloc(vreg->thread->ctrl->dev, sizeof(*fuse), GFP_KERNEL);
+ if (!fuse)
+ return -ENOMEM;
+
+ for (i = 0; i < g_valid_npu_fuse_count; i++) {
+ rc = cpr3_read_fuse_param(base,
+ vreg->cpr3_regulator_data->init_voltage_param[i],
+ &fuse->init_voltage[i]);
+ if (rc) {
+ cpr3_err(vreg, "Unable to read fuse-corner %d initial voltage fuse, rc=%d\n",
+ i, rc);
+ return rc;
+ }
+ }
+
+ vreg->fuse_corner_count = g_valid_npu_fuse_count;
+ vreg->platform_fuses = fuse;
+
+ return 0;
+}
+
+/**
+ * cpr3_npu_parse_corner_data() - parse NPU corner data from device tree
+ * properties of the CPR3 regulator's device node
+ * @vreg: Pointer to the CPR3 regulator
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_npu_parse_corner_data(struct cpr3_regulator *vreg)
+{
+ int rc;
+
+ rc = cpr3_parse_common_corner_data(vreg);
+ if (rc) {
+ cpr3_err(vreg, "error reading corner data, rc=%d\n", rc);
+ return rc;
+ }
+
+ return rc;
+}
+
+/**
+ * cpr3_ipq807x_npu_calculate_open_loop_voltages() - calculate the open-loop
+ * voltage for each corner of a CPR3 regulator
+ * @vreg: Pointer to the CPR3 regulator
+ * @temp_correction: Temperature based correction
+ *
+ * If open-loop voltage interpolation is allowed in device tree, then
+ * this function calculates the open-loop voltage for a given corner using
+ * linear interpolation. This interpolation is performed using the processor
+ * frequencies of the lower and higher Fmax corners along with their fused
+ * open-loop voltages.
+ *
+ * If open-loop voltage interpolation is not allowed, then this function uses
+ * the Fmax fused open-loop voltage for all of the corners associated with a
+ * given fuse corner.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_ipq807x_npu_calculate_open_loop_voltages(
+ struct cpr3_regulator *vreg, bool temp_correction)
+{
+ struct cpr3_ipq807x_npu_fuses *fuse = vreg->platform_fuses;
+ struct cpr3_controller *ctrl = vreg->thread->ctrl;
+ int i, j, rc = 0;
+ u64 freq_low, volt_low, freq_high, volt_high;
+ int *fuse_volt;
+ int *fmax_corner;
+
+ fuse_volt = kcalloc(vreg->fuse_corner_count, sizeof(*fuse_volt),
+ GFP_KERNEL);
+ fmax_corner = kcalloc(vreg->fuse_corner_count, sizeof(*fmax_corner),
+ GFP_KERNEL);
+ if (!fuse_volt || !fmax_corner) {
+ rc = -ENOMEM;
+ goto done;
+ }
+
+ for (i = 0; i < vreg->fuse_corner_count; i++) {
+ if (ctrl->cpr_global_setting == CPR_DISABLED)
+ fuse_volt[i] = vreg->cpr3_regulator_data->fuse_ref_volt[i];
+ else
+ fuse_volt[i] = cpr3_convert_open_loop_voltage_fuse(
+ vreg->cpr3_regulator_data->fuse_ref_volt[i],
+ vreg->cpr3_regulator_data->fuse_step_volt,
+ fuse->init_voltage[i],
+ IPQ807x_NPU_VOLTAGE_FUSE_SIZE);
+
+ /* Log fused open-loop voltage values for debugging purposes. */
+ cpr3_info(vreg, "fused %8s: open-loop=%7d uV\n",
+ cpr3_ipq807x_npu_fuse_corner_name[i],
+ fuse_volt[i]);
+ }
+
+ rc = cpr3_determine_part_type(vreg,
+ fuse_volt[CPR3_IPQ807x_NPU_FUSE_CORNER_TURBO]);
+ if (rc) {
+ cpr3_err(vreg,
+ "fused part type detection failed failed, rc=%d\n", rc);
+ goto done;
+ }
+
+ rc = cpr3_adjust_fused_open_loop_voltages(vreg, fuse_volt);
+ if (rc) {
+ cpr3_err(vreg,
+ "fused open-loop voltage adjustment failed, rc=%d\n",
+ rc);
+ goto done;
+ }
+ if (temp_correction) {
+ rc = cpr3_determine_temp_base_open_loop_correction(vreg,
+ fuse_volt);
+ if (rc) {
+ cpr3_err(vreg,
+ "temp open-loop voltage adj. failed, rc=%d\n",
+ rc);
+ goto done;
+ }
+ }
+
+ for (i = 1; i < vreg->fuse_corner_count; i++) {
+ if (fuse_volt[i] < fuse_volt[i - 1]) {
+ cpr3_info(vreg,
+ "fuse corner %d voltage=%d uV < fuse corner %d \
+ voltage=%d uV; overriding: fuse corner %d \
+ voltage=%d\n",
+ i, fuse_volt[i], i - 1, fuse_volt[i - 1],
+ i, fuse_volt[i - 1]);
+ fuse_volt[i] = fuse_volt[i - 1];
+ }
+ }
+
+ /* Determine highest corner mapped to each fuse corner */
+ j = vreg->fuse_corner_count - 1;
+ for (i = vreg->corner_count - 1; i >= 0; i--) {
+ if (vreg->corner[i].cpr_fuse_corner == j) {
+ fmax_corner[j] = i;
+ j--;
+ }
+ }
+
+ if (j >= 0) {
+ cpr3_err(vreg, "invalid fuse corner mapping\n");
+ rc = -EINVAL;
+ goto done;
+ }
+
+ /*
+ * Interpolation is not possible for corners mapped to the lowest fuse
+ * corner so use the fuse corner value directly.
+ */
+ for (i = 0; i <= fmax_corner[0]; i++)
+ vreg->corner[i].open_loop_volt = fuse_volt[0];
+
+ /* Interpolate voltages for the higher fuse corners. */
+ for (i = 1; i < vreg->fuse_corner_count; i++) {
+ freq_low = vreg->corner[fmax_corner[i - 1]].proc_freq;
+ volt_low = fuse_volt[i - 1];
+ freq_high = vreg->corner[fmax_corner[i]].proc_freq;
+ volt_high = fuse_volt[i];
+
+ for (j = fmax_corner[i - 1] + 1; j <= fmax_corner[i]; j++)
+ vreg->corner[j].open_loop_volt = cpr3_interpolate(
+ freq_low, volt_low, freq_high, volt_high,
+ vreg->corner[j].proc_freq);
+ }
+
+done:
+ if (rc == 0) {
+ cpr3_debug(vreg, "unadjusted per-corner open-loop voltages:\n");
+ for (i = 0; i < vreg->corner_count; i++)
+ cpr3_debug(vreg, "open-loop[%2d] = %d uV\n", i,
+ vreg->corner[i].open_loop_volt);
+
+ rc = cpr3_adjust_open_loop_voltages(vreg);
+ if (rc)
+ cpr3_err(vreg,
+ "open-loop voltage adjustment failed, rc=%d\n",
+ rc);
+ }
+
+ kfree(fuse_volt);
+ kfree(fmax_corner);
+ return rc;
+}
+
+/**
+ * cpr3_npu_print_settings() - print out NPU CPR configuration settings into
+ * the kernel log for debugging purposes
+ * @vreg: Pointer to the CPR3 regulator
+ */
+static void cpr3_npu_print_settings(struct cpr3_regulator *vreg)
+{
+ struct cpr3_corner *corner;
+ int i;
+
+ cpr3_debug(vreg,
+ "Corner: Frequency (Hz), Fuse Corner, Floor (uV), \
+ Open-Loop (uV), Ceiling (uV)\n");
+ for (i = 0; i < vreg->corner_count; i++) {
+ corner = &vreg->corner[i];
+ cpr3_debug(vreg, "%3d: %10u, %2d, %7d, %7d, %7d\n",
+ i, corner->proc_freq, corner->cpr_fuse_corner,
+ corner->floor_volt, corner->open_loop_volt,
+ corner->ceiling_volt);
+ }
+
+ if (vreg->thread->ctrl->apm)
+ cpr3_debug(vreg, "APM threshold = %d uV, APM adjust = %d uV\n",
+ vreg->thread->ctrl->apm_threshold_volt,
+ vreg->thread->ctrl->apm_adj_volt);
+}
+
+/**
+ * cpr3_ipq807x_npu_calc_temp_based_ol_voltages() - Calculate the open loop
+ * voltages based on temperature based correction margins
+ * @vreg: Pointer to the CPR3 regulator
+ */
+
+static int
+cpr3_ipq807x_npu_calc_temp_based_ol_voltages(struct cpr3_regulator *vreg,
+ bool temp_correction)
+{
+ int rc, i;
+
+ rc = cpr3_ipq807x_npu_calculate_open_loop_voltages(vreg,
+ temp_correction);
+ if (rc) {
+ cpr3_err(vreg,
+ "unable to calculate open-loop voltages, rc=%d\n", rc);
+ return rc;
+ }
+
+ rc = cpr3_limit_open_loop_voltages(vreg);
+ if (rc) {
+ cpr3_err(vreg, "unable to limit open-loop voltages, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ cpr3_open_loop_voltage_as_ceiling(vreg);
+
+ rc = cpr3_limit_floor_voltages(vreg);
+ if (rc) {
+ cpr3_err(vreg, "unable to limit floor voltages, rc=%d\n", rc);
+ return rc;
+ }
+
+ for (i = 0; i < vreg->corner_count; i++) {
+ if (temp_correction)
+ vreg->corner[i].cold_temp_open_loop_volt =
+ vreg->corner[i].open_loop_volt;
+ else
+ vreg->corner[i].normal_temp_open_loop_volt =
+ vreg->corner[i].open_loop_volt;
+ }
+
+ cpr3_npu_print_settings(vreg);
+
+ return rc;
+}
+
+/**
+ * cpr3_npu_init_thread() - perform steps necessary to initialize the
+ * configuration data for a CPR3 thread
+ * @thread: Pointer to the CPR3 thread
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_npu_init_thread(struct cpr3_thread *thread)
+{
+ int rc;
+
+ rc = cpr3_parse_common_thread_data(thread);
+ if (rc) {
+ cpr3_err(thread->ctrl,
+ "thread %u CPR thread data from DT- failed, rc=%d\n",
+ thread->thread_id, rc);
+ return rc;
+ }
+
+ return 0;
+}
+
+/**
+ * cpr3_npu_init_regulator() - perform all steps necessary to initialize the
+ * configuration data for a CPR3 regulator
+ * @vreg: Pointer to the CPR3 regulator
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_npu_init_regulator(struct cpr3_regulator *vreg)
+{
+ struct cpr3_ipq807x_npu_fuses *fuse;
+ int rc, cold_temp = 0;
+ bool can_adj_cold_temp = cpr3_can_adjust_cold_temp(vreg);
+
+ rc = cpr3_ipq807x_npu_read_fuse_data(vreg);
+ if (rc) {
+ cpr3_err(vreg, "unable to read CPR fuse data, rc=%d\n", rc);
+ return rc;
+ }
+
+ fuse = vreg->platform_fuses;
+
+ rc = cpr3_npu_parse_corner_data(vreg);
+ if (rc) {
+ cpr3_err(vreg,
+ "Cannot read CPR corner data from DT, rc=%d\n", rc);
+ return rc;
+ }
+
+ rc = cpr3_mem_acc_init(vreg);
+ if (rc) {
+ if (rc != -EPROBE_DEFER)
+ cpr3_err(vreg,
+ "Cannot initialize mem-acc regulator settings, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ if (can_adj_cold_temp) {
+ rc = cpr3_ipq807x_npu_calc_temp_based_ol_voltages(vreg, true);
+ if (rc) {
+ cpr3_err(vreg,
+ "unable to calculate open-loop voltages, rc=%d\n", rc);
+ return rc;
+ }
+ }
+
+ rc = cpr3_ipq807x_npu_calc_temp_based_ol_voltages(vreg, false);
+ if (rc) {
+ cpr3_err(vreg,
+ "unable to calculate open-loop voltages, rc=%d\n", rc);
+ return rc;
+ }
+
+ if (can_adj_cold_temp) {
+ cpr3_info(vreg,
+ "Normal and Cold condition init done. Default to normal.\n");
+
+ rc = cpr3_get_cold_temp_threshold(vreg, &cold_temp);
+ if (rc) {
+ cpr3_err(vreg,
+ "Get cold temperature threshold failed, rc=%d\n", rc);
+ return rc;
+ }
+ register_low_temp_notif(NPU_TSENS, cold_temp,
+ cpr3_npu_temp_notify);
+ }
+
+ return rc;
+}
+
+/**
+ * cpr3_npu_init_controller() - perform NPU CPR3 controller specific
+ * initializations
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_npu_init_controller(struct cpr3_controller *ctrl)
+{
+ int rc;
+
+ rc = cpr3_parse_open_loop_common_ctrl_data(ctrl);
+ if (rc) {
+ if (rc != -EPROBE_DEFER)
+ cpr3_err(ctrl, "unable to parse common controller data, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ ctrl->ctrl_type = CPR_CTRL_TYPE_CPR3;
+ ctrl->supports_hw_closed_loop = false;
+
+ return 0;
+}
+
+static const struct cpr3_reg_data ipq807x_cpr_npu = {
+ .cpr_valid_fuse_count = IPQ807x_NPU_FUSE_CORNERS,
+ .init_voltage_param = ipq807x_npu_init_voltage_param,
+ .fuse_ref_volt = ipq807x_npu_fuse_ref_volt,
+ .fuse_step_volt = IPQ807x_NPU_FUSE_STEP_VOLT,
+ .cpr_clk_rate = IPQ807x_NPU_CPR_CLOCK_RATE,
+};
+
+static const struct cpr3_reg_data ipq817x_cpr_npu = {
+ .cpr_valid_fuse_count = IPQ817x_NPU_FUSE_CORNERS,
+ .init_voltage_param = ipq807x_npu_init_voltage_param,
+ .fuse_ref_volt = ipq807x_npu_fuse_ref_volt,
+ .fuse_step_volt = IPQ807x_NPU_FUSE_STEP_VOLT,
+ .cpr_clk_rate = IPQ807x_NPU_CPR_CLOCK_RATE,
+};
+
+static const struct cpr3_reg_data ipq9574_cpr_npu = {
+ .cpr_valid_fuse_count = IPQ9574_NPU_FUSE_CORNERS,
+ .init_voltage_param = ipq9574_npu_init_voltage_param,
+ .fuse_ref_volt = ipq9574_npu_fuse_ref_volt,
+ .fuse_step_volt = IPQ9574_NPU_FUSE_STEP_VOLT,
+ .cpr_clk_rate = IPQ9574_NPU_CPR_CLOCK_RATE,
+};
+
+static struct of_device_id cpr3_regulator_match_table[] = {
+ {
+ .compatible = "qcom,cpr3-ipq807x-npu-regulator",
+ .data = &ipq807x_cpr_npu
+ },
+ {
+ .compatible = "qcom,cpr3-ipq817x-npu-regulator",
+ .data = &ipq817x_cpr_npu
+ },
+ {
+ .compatible = "qcom,cpr3-ipq9574-npu-regulator",
+ .data = &ipq9574_cpr_npu
+ },
+ {}
+};
+
+static int cpr3_npu_regulator_probe(struct platform_device *pdev)
+{
+ struct device *dev = &pdev->dev;
+ struct cpr3_controller *ctrl;
+ int i, rc;
+ const struct of_device_id *match;
+ struct cpr3_reg_data *cpr_data;
+
+ if (!dev->of_node) {
+ dev_err(dev, "Device tree node is missing\n");
+ return -EINVAL;
+ }
+
+ ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
+ if (!ctrl)
+ return -ENOMEM;
+ g_ctrl = ctrl;
+
+ match = of_match_device(cpr3_regulator_match_table, &pdev->dev);
+ if (!match)
+ return -ENODEV;
+
+ cpr_data = (struct cpr3_reg_data *)match->data;
+ g_valid_npu_fuse_count = cpr_data->cpr_valid_fuse_count;
+ dev_info(dev, "NPU CPR valid fuse count: %d\n", g_valid_npu_fuse_count);
+ ctrl->cpr_clock_rate = cpr_data->cpr_clk_rate;
+
+ ctrl->dev = dev;
+ /* Set to false later if anything precludes CPR operation. */
+ ctrl->cpr_allowed_hw = true;
+
+ rc = of_property_read_string(dev->of_node, "qcom,cpr-ctrl-name",
+ &ctrl->name);
+ if (rc) {
+ cpr3_err(ctrl, "unable to read qcom,cpr-ctrl-name, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ rc = cpr3_map_fuse_base(ctrl, pdev);
+ if (rc) {
+ cpr3_err(ctrl, "could not map fuse base address\n");
+ return rc;
+ }
+
+ rc = cpr3_read_tcsr_setting(ctrl, pdev, IPQ807x_NPU_CPR_TCSR_START,
+ IPQ807x_NPU_CPR_TCSR_END);
+ if (rc) {
+ cpr3_err(ctrl, "could not read CPR tcsr rsetting\n");
+ return rc;
+ }
+
+ rc = cpr3_allocate_threads(ctrl, 0, 0);
+ if (rc) {
+ cpr3_err(ctrl, "failed to allocate CPR thread array, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ if (ctrl->thread_count != 1) {
+ cpr3_err(ctrl, "expected 1 thread but found %d\n",
+ ctrl->thread_count);
+ return -EINVAL;
+ }
+
+ rc = cpr3_npu_init_controller(ctrl);
+ if (rc) {
+ if (rc != -EPROBE_DEFER)
+ cpr3_err(ctrl, "failed to initialize CPR controller parameters, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ rc = cpr3_npu_init_thread(&ctrl->thread[0]);
+ if (rc) {
+ cpr3_err(ctrl, "thread initialization failed, rc=%d\n", rc);
+ return rc;
+ }
+
+ for (i = 0; i < ctrl->thread[0].vreg_count; i++) {
+ ctrl->thread[0].vreg[i].cpr3_regulator_data = cpr_data;
+ rc = cpr3_npu_init_regulator(&ctrl->thread[0].vreg[i]);
+ if (rc) {
+ cpr3_err(&ctrl->thread[0].vreg[i], "regulator initialization failed, rc=%d\n",
+ rc);
+ return rc;
+ }
+ }
+
+ platform_set_drvdata(pdev, ctrl);
+
+ return cpr3_open_loop_regulator_register(pdev, ctrl);
+}
+
+static int cpr3_npu_regulator_remove(struct platform_device *pdev)
+{
+ struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
+
+ return cpr3_open_loop_regulator_unregister(ctrl);
+}
+
+static struct platform_driver cpr3_npu_regulator_driver = {
+ .driver = {
+ .name = "qcom,cpr3-npu-regulator",
+ .of_match_table = cpr3_regulator_match_table,
+ .owner = THIS_MODULE,
+ },
+ .probe = cpr3_npu_regulator_probe,
+ .remove = cpr3_npu_regulator_remove,
+};
+
+static int cpr3_regulator_init(void)
+{
+ return platform_driver_register(&cpr3_npu_regulator_driver);
+}
+arch_initcall(cpr3_regulator_init);
+
+static void cpr3_regulator_exit(void)
+{
+ platform_driver_unregister(&cpr3_npu_regulator_driver);
+}
+module_exit(cpr3_regulator_exit);
+
+MODULE_DESCRIPTION("QCOM CPR3 NPU regulator driver");
+MODULE_LICENSE("Dual BSD/GPLv2");
+MODULE_ALIAS("platform:npu-ipq807x");
--- /dev/null
+++ b/drivers/regulator/cpr3-regulator.c
@@ -0,0 +1,5111 @@
+/*
+ * Copyright (c) 2015-2017, The Linux Foundation. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 and
+ * only version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ */
+
+#define pr_fmt(fmt) "%s: " fmt, __func__
+
+#include <linux/bitops.h>
+#include <linux/debugfs.h>
+#include <linux/delay.h>
+#include <linux/err.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/kernel.h>
+#include <linux/ktime.h>
+#include <linux/list.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/platform_device.h>
+#include <linux/pm_opp.h>
+#include <linux/slab.h>
+#include <linux/sort.h>
+#include <linux/string.h>
+#include <linux/uaccess.h>
+#include <linux/regulator/driver.h>
+#include <linux/regulator/machine.h>
+#include <linux/regulator/of_regulator.h>
+#include <linux/panic_notifier.h>
+
+#include "cpr3-regulator.h"
+
+#define CPR3_REGULATOR_CORNER_INVALID (-1)
+#define CPR3_RO_MASK GENMASK(CPR3_RO_COUNT - 1, 0)
+
+/* CPR3 registers */
+#define CPR3_REG_CPR_CTL 0x4
+#define CPR3_CPR_CTL_LOOP_EN_MASK BIT(0)
+#define CPR3_CPR_CTL_LOOP_ENABLE BIT(0)
+#define CPR3_CPR_CTL_LOOP_DISABLE 0
+#define CPR3_CPR_CTL_IDLE_CLOCKS_MASK GENMASK(5, 1)
+#define CPR3_CPR_CTL_IDLE_CLOCKS_SHIFT 1
+#define CPR3_CPR_CTL_COUNT_MODE_MASK GENMASK(7, 6)
+#define CPR3_CPR_CTL_COUNT_MODE_SHIFT 6
+#define CPR3_CPR_CTL_COUNT_MODE_ALL_AT_ONCE_MIN 0
+#define CPR3_CPR_CTL_COUNT_MODE_ALL_AT_ONCE_MAX 1
+#define CPR3_CPR_CTL_COUNT_MODE_STAGGERED 2
+#define CPR3_CPR_CTL_COUNT_MODE_ALL_AT_ONCE_AGE 3
+#define CPR3_CPR_CTL_COUNT_REPEAT_MASK GENMASK(31, 9)
+#define CPR3_CPR_CTL_COUNT_REPEAT_SHIFT 9
+
+#define CPR3_REG_CPR_STATUS 0x8
+#define CPR3_CPR_STATUS_BUSY_MASK BIT(0)
+#define CPR3_CPR_STATUS_AGING_MEASUREMENT_MASK BIT(1)
+
+/*
+ * This register is not present on controllers that support HW closed-loop
+ * except CPR4 APSS controller.
+ */
+#define CPR3_REG_CPR_TIMER_AUTO_CONT 0xC
+
+#define CPR3_REG_CPR_STEP_QUOT 0x14
+#define CPR3_CPR_STEP_QUOT_MIN_MASK GENMASK(5, 0)
+#define CPR3_CPR_STEP_QUOT_MIN_SHIFT 0
+#define CPR3_CPR_STEP_QUOT_MAX_MASK GENMASK(11, 6)
+#define CPR3_CPR_STEP_QUOT_MAX_SHIFT 6
+
+#define CPR3_REG_GCNT(ro) (0xA0 + 0x4 * (ro))
+
+#define CPR3_REG_SENSOR_BYPASS_WRITE(sensor) (0xE0 + 0x4 * ((sensor) / 32))
+#define CPR3_REG_SENSOR_BYPASS_WRITE_BANK(bank) (0xE0 + 0x4 * (bank))
+
+#define CPR3_REG_SENSOR_MASK_WRITE(sensor) (0x120 + 0x4 * ((sensor) / 32))
+#define CPR3_REG_SENSOR_MASK_WRITE_BANK(bank) (0x120 + 0x4 * (bank))
+#define CPR3_REG_SENSOR_MASK_READ(sensor) (0x140 + 0x4 * ((sensor) / 32))
+
+#define CPR3_REG_SENSOR_OWNER(sensor) (0x200 + 0x4 * (sensor))
+
+#define CPR3_REG_CONT_CMD 0x800
+#define CPR3_CONT_CMD_ACK 0x1
+#define CPR3_CONT_CMD_NACK 0x0
+
+#define CPR3_REG_THRESH(thread) (0x808 + 0x440 * (thread))
+#define CPR3_THRESH_CONS_DOWN_MASK GENMASK(3, 0)
+#define CPR3_THRESH_CONS_DOWN_SHIFT 0
+#define CPR3_THRESH_CONS_UP_MASK GENMASK(7, 4)
+#define CPR3_THRESH_CONS_UP_SHIFT 4
+#define CPR3_THRESH_DOWN_THRESH_MASK GENMASK(12, 8)
+#define CPR3_THRESH_DOWN_THRESH_SHIFT 8
+#define CPR3_THRESH_UP_THRESH_MASK GENMASK(17, 13)
+#define CPR3_THRESH_UP_THRESH_SHIFT 13
+
+#define CPR3_REG_RO_MASK(thread) (0x80C + 0x440 * (thread))
+
+#define CPR3_REG_RESULT0(thread) (0x810 + 0x440 * (thread))
+#define CPR3_RESULT0_BUSY_MASK BIT(0)
+#define CPR3_RESULT0_STEP_DN_MASK BIT(1)
+#define CPR3_RESULT0_STEP_UP_MASK BIT(2)
+#define CPR3_RESULT0_ERROR_STEPS_MASK GENMASK(7, 3)
+#define CPR3_RESULT0_ERROR_STEPS_SHIFT 3
+#define CPR3_RESULT0_ERROR_MASK GENMASK(19, 8)
+#define CPR3_RESULT0_ERROR_SHIFT 8
+#define CPR3_RESULT0_NEGATIVE_MASK BIT(20)
+
+#define CPR3_REG_RESULT1(thread) (0x814 + 0x440 * (thread))
+#define CPR3_RESULT1_QUOT_MIN_MASK GENMASK(11, 0)
+#define CPR3_RESULT1_QUOT_MIN_SHIFT 0
+#define CPR3_RESULT1_QUOT_MAX_MASK GENMASK(23, 12)
+#define CPR3_RESULT1_QUOT_MAX_SHIFT 12
+#define CPR3_RESULT1_RO_MIN_MASK GENMASK(27, 24)
+#define CPR3_RESULT1_RO_MIN_SHIFT 24
+#define CPR3_RESULT1_RO_MAX_MASK GENMASK(31, 28)
+#define CPR3_RESULT1_RO_MAX_SHIFT 28
+
+#define CPR3_REG_RESULT2(thread) (0x818 + 0x440 * (thread))
+#define CPR3_RESULT2_STEP_QUOT_MIN_MASK GENMASK(5, 0)
+#define CPR3_RESULT2_STEP_QUOT_MIN_SHIFT 0
+#define CPR3_RESULT2_STEP_QUOT_MAX_MASK GENMASK(11, 6)
+#define CPR3_RESULT2_STEP_QUOT_MAX_SHIFT 6
+#define CPR3_RESULT2_SENSOR_MIN_MASK GENMASK(23, 16)
+#define CPR3_RESULT2_SENSOR_MIN_SHIFT 16
+#define CPR3_RESULT2_SENSOR_MAX_MASK GENMASK(31, 24)
+#define CPR3_RESULT2_SENSOR_MAX_SHIFT 24
+
+#define CPR3_REG_IRQ_EN 0x81C
+#define CPR3_REG_IRQ_CLEAR 0x820
+#define CPR3_REG_IRQ_STATUS 0x824
+#define CPR3_IRQ_UP BIT(3)
+#define CPR3_IRQ_MID BIT(2)
+#define CPR3_IRQ_DOWN BIT(1)
+
+#define CPR3_REG_TARGET_QUOT(thread, ro) \
+ (0x840 + 0x440 * (thread) + 0x4 * (ro))
+
+/* Registers found only on controllers that support HW closed-loop. */
+#define CPR3_REG_PD_THROTTLE 0xE8
+#define CPR3_PD_THROTTLE_DISABLE 0x0
+
+#define CPR3_REG_HW_CLOSED_LOOP 0x3000
+#define CPR3_HW_CLOSED_LOOP_ENABLE 0x0
+#define CPR3_HW_CLOSED_LOOP_DISABLE 0x1
+
+#define CPR3_REG_CPR_TIMER_MID_CONT 0x3004
+#define CPR3_REG_CPR_TIMER_UP_DN_CONT 0x3008
+
+#define CPR3_REG_LAST_MEASUREMENT 0x7F8
+#define CPR3_LAST_MEASUREMENT_THREAD_DN_SHIFT 0
+#define CPR3_LAST_MEASUREMENT_THREAD_UP_SHIFT 4
+#define CPR3_LAST_MEASUREMENT_THREAD_DN(thread) \
+ (BIT(thread) << CPR3_LAST_MEASUREMENT_THREAD_DN_SHIFT)
+#define CPR3_LAST_MEASUREMENT_THREAD_UP(thread) \
+ (BIT(thread) << CPR3_LAST_MEASUREMENT_THREAD_UP_SHIFT)
+#define CPR3_LAST_MEASUREMENT_AGGR_DN BIT(8)
+#define CPR3_LAST_MEASUREMENT_AGGR_MID BIT(9)
+#define CPR3_LAST_MEASUREMENT_AGGR_UP BIT(10)
+#define CPR3_LAST_MEASUREMENT_VALID BIT(11)
+#define CPR3_LAST_MEASUREMENT_SAW_ERROR BIT(12)
+#define CPR3_LAST_MEASUREMENT_PD_BYPASS_MASK GENMASK(23, 16)
+#define CPR3_LAST_MEASUREMENT_PD_BYPASS_SHIFT 16
+
+/* CPR4 controller specific registers and bit definitions */
+#define CPR4_REG_CPR_TIMER_CLAMP 0x10
+#define CPR4_CPR_TIMER_CLAMP_THREAD_AGGREGATION_EN BIT(27)
+
+#define CPR4_REG_MISC 0x700
+#define CPR4_MISC_MARGIN_TABLE_ROW_SELECT_MASK GENMASK(23, 20)
+#define CPR4_MISC_MARGIN_TABLE_ROW_SELECT_SHIFT 20
+#define CPR4_MISC_TEMP_SENSOR_ID_START_MASK GENMASK(27, 24)
+#define CPR4_MISC_TEMP_SENSOR_ID_START_SHIFT 24
+#define CPR4_MISC_TEMP_SENSOR_ID_END_MASK GENMASK(31, 28)
+#define CPR4_MISC_TEMP_SENSOR_ID_END_SHIFT 28
+
+#define CPR4_REG_SAW_ERROR_STEP_LIMIT 0x7A4
+#define CPR4_SAW_ERROR_STEP_LIMIT_UP_MASK GENMASK(4, 0)
+#define CPR4_SAW_ERROR_STEP_LIMIT_UP_SHIFT 0
+#define CPR4_SAW_ERROR_STEP_LIMIT_DN_MASK GENMASK(9, 5)
+#define CPR4_SAW_ERROR_STEP_LIMIT_DN_SHIFT 5
+
+#define CPR4_REG_MARGIN_TEMP_CORE_TIMERS 0x7A8
+#define CPR4_MARGIN_TEMP_CORE_TIMERS_SETTLE_VOLTAGE_COUNT_MASK GENMASK(28, 18)
+#define CPR4_MARGIN_TEMP_CORE_TIMERS_SETTLE_VOLTAGE_COUNT_SHIFT 18
+
+#define CPR4_REG_MARGIN_TEMP_CORE(core) (0x7AC + 0x4 * (core))
+#define CPR4_MARGIN_TEMP_CORE_ADJ_MASK GENMASK(7, 0)
+#define CPR4_MARGIN_TEMP_CORE_ADJ_SHIFT 8
+
+#define CPR4_REG_MARGIN_TEMP_POINT0N1 0x7F0
+#define CPR4_MARGIN_TEMP_POINT0_MASK GENMASK(11, 0)
+#define CPR4_MARGIN_TEMP_POINT0_SHIFT 0
+#define CPR4_MARGIN_TEMP_POINT1_MASK GENMASK(23, 12)
+#define CPR4_MARGIN_TEMP_POINT1_SHIFT 12
+#define CPR4_REG_MARGIN_TEMP_POINT2 0x7F4
+#define CPR4_MARGIN_TEMP_POINT2_MASK GENMASK(11, 0)
+#define CPR4_MARGIN_TEMP_POINT2_SHIFT 0
+
+#define CPR4_REG_MARGIN_ADJ_CTL 0x7F8
+#define CPR4_MARGIN_ADJ_CTL_BOOST_EN BIT(0)
+#define CPR4_MARGIN_ADJ_CTL_CORE_ADJ_EN BIT(1)
+#define CPR4_MARGIN_ADJ_CTL_TEMP_ADJ_EN BIT(2)
+#define CPR4_MARGIN_ADJ_CTL_TIMER_SETTLE_VOLTAGE_EN BIT(3)
+#define CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_EN_MASK BIT(4)
+#define CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_ENABLE BIT(4)
+#define CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_DISABLE 0
+#define CPR4_MARGIN_ADJ_CTL_PER_RO_KV_MARGIN_EN BIT(7)
+#define CPR4_MARGIN_ADJ_CTL_KV_MARGIN_ADJ_EN BIT(8)
+#define CPR4_MARGIN_ADJ_CTL_PMIC_STEP_SIZE_MASK GENMASK(16, 12)
+#define CPR4_MARGIN_ADJ_CTL_PMIC_STEP_SIZE_SHIFT 12
+#define CPR4_MARGIN_ADJ_CTL_INITIAL_TEMP_BAND_MASK GENMASK(21, 19)
+#define CPR4_MARGIN_ADJ_CTL_INITIAL_TEMP_BAND_SHIFT 19
+#define CPR4_MARGIN_ADJ_CTL_MAX_NUM_CORES_MASK GENMASK(25, 22)
+#define CPR4_MARGIN_ADJ_CTL_MAX_NUM_CORES_SHIFT 22
+#define CPR4_MARGIN_ADJ_CTL_KV_MARGIN_ADJ_STEP_QUOT_MASK GENMASK(31, 26)
+#define CPR4_MARGIN_ADJ_CTL_KV_MARGIN_ADJ_STEP_QUOT_SHIFT 26
+
+#define CPR4_REG_CPR_MASK_THREAD(thread) (0x80C + 0x440 * (thread))
+#define CPR4_CPR_MASK_THREAD_DISABLE_THREAD BIT(31)
+#define CPR4_CPR_MASK_THREAD_RO_MASK4THREAD_MASK GENMASK(15, 0)
+
+/*
+ * The amount of time to wait for the CPR controller to become idle when
+ * performing an aging measurement.
+ */
+#define CPR3_AGING_MEASUREMENT_TIMEOUT_NS 5000000
+
+/*
+ * The number of individual aging measurements to perform which are then
+ * averaged together in order to determine the final aging adjustment value.
+ */
+#define CPR3_AGING_MEASUREMENT_ITERATIONS 16
+
+/*
+ * Aging measurements for the aged and unaged ring oscillators take place a few
+ * microseconds apart. If the vdd-supply voltage fluctuates between the two
+ * measurements, then the difference between them will be incorrect. The
+ * difference could end up too high or too low. This constant defines the
+ * number of lowest and highest measurements to ignore when averaging.
+ */
+#define CPR3_AGING_MEASUREMENT_FILTER 3
+
+/*
+ * The number of times to attempt the full aging measurement sequence before
+ * declaring a measurement failure.
+ */
+#define CPR3_AGING_RETRY_COUNT 5
+
+/*
+ * The maximum time to wait in microseconds for a CPR register write to
+ * complete.
+ */
+#define CPR3_REGISTER_WRITE_DELAY_US 200
+
+static DEFINE_MUTEX(cpr3_controller_list_mutex);
+static LIST_HEAD(cpr3_controller_list);
+static struct dentry *cpr3_debugfs_base;
+
+/**
+ * cpr3_read() - read four bytes from the memory address specified
+ * @ctrl: Pointer to the CPR3 controller
+ * @offset: Offset in bytes from the CPR3 controller's base address
+ *
+ * Return: memory address value
+ */
+static inline u32 cpr3_read(struct cpr3_controller *ctrl, u32 offset)
+{
+ if (!ctrl->cpr_enabled) {
+ cpr3_err(ctrl, "CPR register reads are not possible when CPR clocks are disabled\n");
+ return 0;
+ }
+
+ return readl_relaxed(ctrl->cpr_ctrl_base + offset);
+}
+
+/**
+ * cpr3_write() - write four bytes to the memory address specified
+ * @ctrl: Pointer to the CPR3 controller
+ * @offset: Offset in bytes from the CPR3 controller's base address
+ * @value: Value to write to the memory address
+ *
+ * Return: none
+ */
+static inline void cpr3_write(struct cpr3_controller *ctrl, u32 offset,
+ u32 value)
+{
+ if (!ctrl->cpr_enabled) {
+ cpr3_err(ctrl, "CPR register writes are not possible when CPR clocks are disabled\n");
+ return;
+ }
+
+ writel_relaxed(value, ctrl->cpr_ctrl_base + offset);
+}
+
+/**
+ * cpr3_masked_write() - perform a read-modify-write sequence so that only
+ * masked bits are modified
+ * @ctrl: Pointer to the CPR3 controller
+ * @offset: Offset in bytes from the CPR3 controller's base address
+ * @mask: Mask identifying the bits that should be modified
+ * @value: Value to write to the memory address
+ *
+ * Return: none
+ */
+static inline void cpr3_masked_write(struct cpr3_controller *ctrl, u32 offset,
+ u32 mask, u32 value)
+{
+ u32 reg_val, orig_val;
+
+ if (!ctrl->cpr_enabled) {
+ cpr3_err(ctrl, "CPR register writes are not possible when CPR clocks are disabled\n");
+ return;
+ }
+
+ reg_val = orig_val = readl_relaxed(ctrl->cpr_ctrl_base + offset);
+ reg_val &= ~mask;
+ reg_val |= value & mask;
+
+ if (reg_val != orig_val)
+ writel_relaxed(reg_val, ctrl->cpr_ctrl_base + offset);
+}
+
+/**
+ * cpr3_ctrl_loop_enable() - enable the CPR sensing loop for a given controller
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: none
+ */
+static inline void cpr3_ctrl_loop_enable(struct cpr3_controller *ctrl)
+{
+ if (ctrl->cpr_enabled && !(ctrl->aggr_corner.sdelta
+ && ctrl->aggr_corner.sdelta->allow_boost))
+ cpr3_masked_write(ctrl, CPR3_REG_CPR_CTL,
+ CPR3_CPR_CTL_LOOP_EN_MASK, CPR3_CPR_CTL_LOOP_ENABLE);
+}
+
+/**
+ * cpr3_ctrl_loop_disable() - disable the CPR sensing loop for a given
+ * controller
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: none
+ */
+static inline void cpr3_ctrl_loop_disable(struct cpr3_controller *ctrl)
+{
+ if (ctrl->cpr_enabled)
+ cpr3_masked_write(ctrl, CPR3_REG_CPR_CTL,
+ CPR3_CPR_CTL_LOOP_EN_MASK, CPR3_CPR_CTL_LOOP_DISABLE);
+}
+
+/**
+ * cpr3_clock_enable() - prepare and enable all clocks used by this CPR3
+ * controller
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_clock_enable(struct cpr3_controller *ctrl)
+{
+ int rc;
+
+ rc = clk_prepare_enable(ctrl->bus_clk);
+ if (rc) {
+ cpr3_err(ctrl, "failed to enable bus clock, rc=%d\n", rc);
+ return rc;
+ }
+
+ rc = clk_prepare_enable(ctrl->iface_clk);
+ if (rc) {
+ cpr3_err(ctrl, "failed to enable interface clock, rc=%d\n", rc);
+ clk_disable_unprepare(ctrl->bus_clk);
+ return rc;
+ }
+
+ rc = clk_prepare_enable(ctrl->core_clk);
+ if (rc) {
+ cpr3_err(ctrl, "failed to enable core clock, rc=%d\n", rc);
+ clk_disable_unprepare(ctrl->iface_clk);
+ clk_disable_unprepare(ctrl->bus_clk);
+ return rc;
+ }
+
+ return 0;
+}
+
+/**
+ * cpr3_clock_disable() - disable and unprepare all clocks used by this CPR3
+ * controller
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: none
+ */
+static void cpr3_clock_disable(struct cpr3_controller *ctrl)
+{
+ clk_disable_unprepare(ctrl->core_clk);
+ clk_disable_unprepare(ctrl->iface_clk);
+ clk_disable_unprepare(ctrl->bus_clk);
+}
+
+/**
+ * cpr3_ctrl_clear_cpr4_config() - clear the CPR4 register configuration
+ * programmed for current aggregated corner of a given controller
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+static inline int cpr3_ctrl_clear_cpr4_config(struct cpr3_controller *ctrl)
+{
+ struct cpr4_sdelta *aggr_sdelta = ctrl->aggr_corner.sdelta;
+ bool cpr_enabled = ctrl->cpr_enabled;
+ int i, rc = 0;
+
+ if (!aggr_sdelta || !(aggr_sdelta->allow_core_count_adj
+ || aggr_sdelta->allow_temp_adj || aggr_sdelta->allow_boost))
+ /* cpr4 features are not enabled */
+ return 0;
+
+ /* Ensure that CPR clocks are enabled before writing to registers. */
+ if (!cpr_enabled) {
+ rc = cpr3_clock_enable(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "clock enable failed, rc=%d\n", rc);
+ return rc;
+ }
+ ctrl->cpr_enabled = true;
+ }
+
+ /*
+ * Clear feature enable configuration made for current
+ * aggregated corner.
+ */
+ cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
+ CPR4_MARGIN_ADJ_CTL_MAX_NUM_CORES_MASK
+ | CPR4_MARGIN_ADJ_CTL_CORE_ADJ_EN
+ | CPR4_MARGIN_ADJ_CTL_TEMP_ADJ_EN
+ | CPR4_MARGIN_ADJ_CTL_KV_MARGIN_ADJ_EN
+ | CPR4_MARGIN_ADJ_CTL_BOOST_EN
+ | CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_EN_MASK, 0);
+
+ cpr3_masked_write(ctrl, CPR4_REG_MISC,
+ CPR4_MISC_MARGIN_TABLE_ROW_SELECT_MASK,
+ 0 << CPR4_MISC_MARGIN_TABLE_ROW_SELECT_SHIFT);
+
+ for (i = 0; i <= aggr_sdelta->max_core_count; i++) {
+ /* Clear voltage margin adjustments programmed in TEMP_COREi */
+ cpr3_write(ctrl, CPR4_REG_MARGIN_TEMP_CORE(i), 0);
+ }
+
+ /* Turn off CPR clocks if they were off before this function call. */
+ if (!cpr_enabled) {
+ cpr3_clock_disable(ctrl);
+ ctrl->cpr_enabled = false;
+ }
+
+ return 0;
+}
+
+/**
+ * cpr3_closed_loop_enable() - enable logical CPR closed-loop operation
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_closed_loop_enable(struct cpr3_controller *ctrl)
+{
+ int rc;
+
+ if (!ctrl->cpr_allowed_hw || !ctrl->cpr_allowed_sw) {
+ cpr3_err(ctrl, "cannot enable closed-loop CPR operation because it is disallowed\n");
+ return -EPERM;
+ } else if (ctrl->cpr_enabled) {
+ /* Already enabled */
+ return 0;
+ } else if (ctrl->cpr_suspended) {
+ /*
+ * CPR must remain disabled as the system is entering suspend.
+ */
+ return 0;
+ }
+
+ rc = cpr3_clock_enable(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "unable to enable CPR clocks, rc=%d\n", rc);
+ return rc;
+ }
+
+ ctrl->cpr_enabled = true;
+ cpr3_debug(ctrl, "CPR closed-loop operation enabled\n");
+
+ return 0;
+}
+
+/**
+ * cpr3_closed_loop_disable() - disable logical CPR closed-loop operation
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+static inline int cpr3_closed_loop_disable(struct cpr3_controller *ctrl)
+{
+ if (!ctrl->cpr_enabled) {
+ /* Already disabled */
+ return 0;
+ }
+
+ cpr3_clock_disable(ctrl);
+ ctrl->cpr_enabled = false;
+ cpr3_debug(ctrl, "CPR closed-loop operation disabled\n");
+
+ return 0;
+}
+
+/**
+ * cpr3_regulator_get_gcnt() - returns the GCNT register value corresponding
+ * to the clock rate and sensor time of the CPR3 controller
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: GCNT value
+ */
+static u32 cpr3_regulator_get_gcnt(struct cpr3_controller *ctrl)
+{
+ u64 temp;
+ unsigned int remainder;
+ u32 gcnt;
+
+ temp = (u64)ctrl->cpr_clock_rate * (u64)ctrl->sensor_time;
+ remainder = do_div(temp, 1000000000);
+ if (remainder)
+ temp++;
+ /*
+ * GCNT == 0 corresponds to a single ref clock measurement interval so
+ * offset GCNT values by 1.
+ */
+ gcnt = temp - 1;
+
+ return gcnt;
+}
+
+/**
+ * cpr3_regulator_init_thread() - performs hardware initialization of CPR
+ * thread registers
+ * @thread: Pointer to the CPR3 thread
+ *
+ * CPR interface/bus clocks must be enabled before calling this function.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_init_thread(struct cpr3_thread *thread)
+{
+ u32 reg;
+
+ reg = (thread->consecutive_up << CPR3_THRESH_CONS_UP_SHIFT)
+ & CPR3_THRESH_CONS_UP_MASK;
+ reg |= (thread->consecutive_down << CPR3_THRESH_CONS_DOWN_SHIFT)
+ & CPR3_THRESH_CONS_DOWN_MASK;
+ reg |= (thread->up_threshold << CPR3_THRESH_UP_THRESH_SHIFT)
+ & CPR3_THRESH_UP_THRESH_MASK;
+ reg |= (thread->down_threshold << CPR3_THRESH_DOWN_THRESH_SHIFT)
+ & CPR3_THRESH_DOWN_THRESH_MASK;
+
+ cpr3_write(thread->ctrl, CPR3_REG_THRESH(thread->thread_id), reg);
+
+ /*
+ * Mask all RO's initially so that unused thread doesn't contribute
+ * to closed-loop voltage.
+ */
+ cpr3_write(thread->ctrl, CPR3_REG_RO_MASK(thread->thread_id),
+ CPR3_RO_MASK);
+
+ return 0;
+}
+
+/**
+ * cpr4_regulator_init_temp_points() - performs hardware initialization of CPR4
+ * registers to track tsen temperature data and also specify the
+ * temperature band range values to apply different voltage margins
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * CPR interface/bus clocks must be enabled before calling this function.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr4_regulator_init_temp_points(struct cpr3_controller *ctrl)
+{
+ if (!ctrl->allow_temp_adj)
+ return 0;
+
+ cpr3_masked_write(ctrl, CPR4_REG_MISC,
+ CPR4_MISC_TEMP_SENSOR_ID_START_MASK,
+ ctrl->temp_sensor_id_start
+ << CPR4_MISC_TEMP_SENSOR_ID_START_SHIFT);
+
+ cpr3_masked_write(ctrl, CPR4_REG_MISC,
+ CPR4_MISC_TEMP_SENSOR_ID_END_MASK,
+ ctrl->temp_sensor_id_end
+ << CPR4_MISC_TEMP_SENSOR_ID_END_SHIFT);
+
+ cpr3_masked_write(ctrl, CPR4_REG_MARGIN_TEMP_POINT2,
+ CPR4_MARGIN_TEMP_POINT2_MASK,
+ (ctrl->temp_band_count == 4 ? ctrl->temp_points[2] : 0x7FF)
+ << CPR4_MARGIN_TEMP_POINT2_SHIFT);
+
+ cpr3_masked_write(ctrl, CPR4_REG_MARGIN_TEMP_POINT0N1,
+ CPR4_MARGIN_TEMP_POINT1_MASK,
+ (ctrl->temp_band_count >= 3 ? ctrl->temp_points[1] : 0x7FF)
+ << CPR4_MARGIN_TEMP_POINT1_SHIFT);
+
+ cpr3_masked_write(ctrl, CPR4_REG_MARGIN_TEMP_POINT0N1,
+ CPR4_MARGIN_TEMP_POINT0_MASK,
+ (ctrl->temp_band_count >= 2 ? ctrl->temp_points[0] : 0x7FF)
+ << CPR4_MARGIN_TEMP_POINT0_SHIFT);
+ return 0;
+}
+
+/**
+ * cpr3_regulator_init_cpr4() - performs hardware initialization at the
+ * controller and thread level required for CPR4 operation.
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * CPR interface/bus clocks must be enabled before calling this function.
+ * This function allocates sdelta structures and sdelta tables for aggregated
+ * corners of the controller and its threads.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_init_cpr4(struct cpr3_controller *ctrl)
+{
+ struct cpr3_thread *thread;
+ struct cpr3_regulator *vreg;
+ struct cpr4_sdelta *sdelta;
+ int i, j, ctrl_max_core_count, thread_max_core_count, rc = 0;
+ bool ctrl_valid_sdelta, thread_valid_sdelta;
+ u32 pmic_step_size = 1;
+ int thread_id = 0;
+ u64 temp;
+
+ if (ctrl->supports_hw_closed_loop) {
+ if (ctrl->saw_use_unit_mV)
+ pmic_step_size = ctrl->step_volt / 1000;
+ cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
+ CPR4_MARGIN_ADJ_CTL_PMIC_STEP_SIZE_MASK,
+ (pmic_step_size
+ << CPR4_MARGIN_ADJ_CTL_PMIC_STEP_SIZE_SHIFT));
+
+ cpr3_masked_write(ctrl, CPR4_REG_SAW_ERROR_STEP_LIMIT,
+ CPR4_SAW_ERROR_STEP_LIMIT_DN_MASK,
+ (ctrl->down_error_step_limit
+ << CPR4_SAW_ERROR_STEP_LIMIT_DN_SHIFT));
+
+ cpr3_masked_write(ctrl, CPR4_REG_SAW_ERROR_STEP_LIMIT,
+ CPR4_SAW_ERROR_STEP_LIMIT_UP_MASK,
+ (ctrl->up_error_step_limit
+ << CPR4_SAW_ERROR_STEP_LIMIT_UP_SHIFT));
+
+ /*
+ * Enable thread aggregation regardless of which threads are
+ * enabled or disabled.
+ */
+ cpr3_masked_write(ctrl, CPR4_REG_CPR_TIMER_CLAMP,
+ CPR4_CPR_TIMER_CLAMP_THREAD_AGGREGATION_EN,
+ CPR4_CPR_TIMER_CLAMP_THREAD_AGGREGATION_EN);
+
+ switch (ctrl->thread_count) {
+ case 0:
+ /* Disable both threads */
+ cpr3_masked_write(ctrl, CPR4_REG_CPR_MASK_THREAD(0),
+ CPR4_CPR_MASK_THREAD_DISABLE_THREAD
+ | CPR4_CPR_MASK_THREAD_RO_MASK4THREAD_MASK,
+ CPR4_CPR_MASK_THREAD_DISABLE_THREAD
+ | CPR4_CPR_MASK_THREAD_RO_MASK4THREAD_MASK);
+
+ cpr3_masked_write(ctrl, CPR4_REG_CPR_MASK_THREAD(1),
+ CPR4_CPR_MASK_THREAD_DISABLE_THREAD
+ | CPR4_CPR_MASK_THREAD_RO_MASK4THREAD_MASK,
+ CPR4_CPR_MASK_THREAD_DISABLE_THREAD
+ | CPR4_CPR_MASK_THREAD_RO_MASK4THREAD_MASK);
+ break;
+ case 1:
+ /* Disable unused thread */
+ thread_id = ctrl->thread[0].thread_id ? 0 : 1;
+ cpr3_masked_write(ctrl,
+ CPR4_REG_CPR_MASK_THREAD(thread_id),
+ CPR4_CPR_MASK_THREAD_DISABLE_THREAD
+ | CPR4_CPR_MASK_THREAD_RO_MASK4THREAD_MASK,
+ CPR4_CPR_MASK_THREAD_DISABLE_THREAD
+ | CPR4_CPR_MASK_THREAD_RO_MASK4THREAD_MASK);
+ break;
+ }
+ }
+
+ if (!ctrl->allow_core_count_adj && !ctrl->allow_temp_adj
+ && !ctrl->allow_boost) {
+ /*
+ * Skip below configuration as none of the features
+ * are enabled.
+ */
+ return rc;
+ }
+
+ if (ctrl->supports_hw_closed_loop)
+ cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
+ CPR4_MARGIN_ADJ_CTL_TIMER_SETTLE_VOLTAGE_EN,
+ CPR4_MARGIN_ADJ_CTL_TIMER_SETTLE_VOLTAGE_EN);
+
+ cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
+ CPR4_MARGIN_ADJ_CTL_KV_MARGIN_ADJ_STEP_QUOT_MASK,
+ ctrl->step_quot_fixed
+ << CPR4_MARGIN_ADJ_CTL_KV_MARGIN_ADJ_STEP_QUOT_SHIFT);
+
+ cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
+ CPR4_MARGIN_ADJ_CTL_PER_RO_KV_MARGIN_EN,
+ (ctrl->use_dynamic_step_quot
+ ? CPR4_MARGIN_ADJ_CTL_PER_RO_KV_MARGIN_EN : 0));
+
+ cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
+ CPR4_MARGIN_ADJ_CTL_INITIAL_TEMP_BAND_MASK,
+ ctrl->initial_temp_band
+ << CPR4_MARGIN_ADJ_CTL_INITIAL_TEMP_BAND_SHIFT);
+
+ rc = cpr4_regulator_init_temp_points(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "initialize temp points failed, rc=%d\n", rc);
+ return rc;
+ }
+
+ if (ctrl->voltage_settling_time) {
+ /*
+ * Configure the settling timer used to account for
+ * one VDD supply step.
+ */
+ temp = (u64)ctrl->cpr_clock_rate
+ * (u64)ctrl->voltage_settling_time;
+ do_div(temp, 1000000000);
+ cpr3_masked_write(ctrl, CPR4_REG_MARGIN_TEMP_CORE_TIMERS,
+ CPR4_MARGIN_TEMP_CORE_TIMERS_SETTLE_VOLTAGE_COUNT_MASK,
+ temp
+ << CPR4_MARGIN_TEMP_CORE_TIMERS_SETTLE_VOLTAGE_COUNT_SHIFT);
+ }
+
+ /*
+ * Allocate memory for cpr4_sdelta structure and sdelta table for
+ * controller aggregated corner by finding the maximum core count
+ * used by any cpr3 regulators.
+ */
+ ctrl_max_core_count = 1;
+ ctrl_valid_sdelta = false;
+ for (i = 0; i < ctrl->thread_count; i++) {
+ thread = &ctrl->thread[i];
+
+ /*
+ * Allocate memory for cpr4_sdelta structure and sdelta table
+ * for thread aggregated corner by finding the maximum core
+ * count used by any cpr3 regulators of the thread.
+ */
+ thread_max_core_count = 1;
+ thread_valid_sdelta = false;
+ for (j = 0; j < thread->vreg_count; j++) {
+ vreg = &thread->vreg[j];
+ thread_max_core_count = max(thread_max_core_count,
+ vreg->max_core_count);
+ thread_valid_sdelta |= (vreg->allow_core_count_adj
+ | vreg->allow_temp_adj
+ | vreg->allow_boost);
+ }
+ if (thread_valid_sdelta) {
+ sdelta = devm_kzalloc(ctrl->dev, sizeof(*sdelta),
+ GFP_KERNEL);
+ if (!sdelta)
+ return -ENOMEM;
+
+ sdelta->table = devm_kcalloc(ctrl->dev,
+ thread_max_core_count
+ * ctrl->temp_band_count,
+ sizeof(*sdelta->table),
+ GFP_KERNEL);
+ if (!sdelta->table)
+ return -ENOMEM;
+
+ sdelta->boost_table = devm_kcalloc(ctrl->dev,
+ ctrl->temp_band_count,
+ sizeof(*sdelta->boost_table),
+ GFP_KERNEL);
+ if (!sdelta->boost_table)
+ return -ENOMEM;
+
+ thread->aggr_corner.sdelta = sdelta;
+ }
+
+ ctrl_valid_sdelta |= thread_valid_sdelta;
+ ctrl_max_core_count = max(ctrl_max_core_count,
+ thread_max_core_count);
+ }
+
+ if (ctrl_valid_sdelta) {
+ sdelta = devm_kzalloc(ctrl->dev, sizeof(*sdelta), GFP_KERNEL);
+ if (!sdelta)
+ return -ENOMEM;
+
+ sdelta->table = devm_kcalloc(ctrl->dev, ctrl_max_core_count
+ * ctrl->temp_band_count,
+ sizeof(*sdelta->table), GFP_KERNEL);
+ if (!sdelta->table)
+ return -ENOMEM;
+
+ sdelta->boost_table = devm_kcalloc(ctrl->dev,
+ ctrl->temp_band_count,
+ sizeof(*sdelta->boost_table),
+ GFP_KERNEL);
+ if (!sdelta->boost_table)
+ return -ENOMEM;
+
+ ctrl->aggr_corner.sdelta = sdelta;
+ }
+
+ return 0;
+}
+
+/**
+ * cpr3_write_temp_core_margin() - programs hardware SDELTA registers with
+ * the voltage margin adjustments that need to be applied for
+ * different online core-count and temperature bands.
+ * @ctrl: Pointer to the CPR3 controller
+ * @addr: SDELTA register address
+ * @temp_core_adj: Array of voltage margin values for different temperature
+ * bands.
+ *
+ * CPR interface/bus clocks must be enabled before calling this function.
+ *
+ * Return: none
+ */
+static void cpr3_write_temp_core_margin(struct cpr3_controller *ctrl,
+ int addr, int *temp_core_adj)
+{
+ int i, margin_steps;
+ u32 reg = 0;
+
+ for (i = 0; i < ctrl->temp_band_count; i++) {
+ margin_steps = max(min(temp_core_adj[i], 127), -128);
+ reg |= (margin_steps & CPR4_MARGIN_TEMP_CORE_ADJ_MASK) <<
+ (i * CPR4_MARGIN_TEMP_CORE_ADJ_SHIFT);
+ }
+
+ cpr3_write(ctrl, addr, reg);
+ cpr3_debug(ctrl, "sdelta offset=0x%08x, val=0x%08x\n", addr, reg);
+}
+
+/**
+ * cpr3_controller_program_sdelta() - programs hardware SDELTA registers with
+ * the voltage margin adjustments that need to be applied at
+ * different online core-count and temperature bands. Also,
+ * programs hardware register configuration for per-online-core
+ * and per-temperature based adjustments.
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * CPR interface/bus clocks must be enabled before calling this function.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_controller_program_sdelta(struct cpr3_controller *ctrl)
+{
+ struct cpr3_corner *corner = &ctrl->aggr_corner;
+ struct cpr4_sdelta *sdelta = corner->sdelta;
+ int i, index, max_core_count, rc = 0;
+ bool cpr_enabled = ctrl->cpr_enabled;
+
+ if (!sdelta)
+ /* cpr4_sdelta not defined for current aggregated corner */
+ return 0;
+
+ if (ctrl->supports_hw_closed_loop && ctrl->cpr_enabled) {
+ cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
+ CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_EN_MASK,
+ (ctrl->use_hw_closed_loop && !sdelta->allow_boost)
+ ? CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_ENABLE : 0);
+ }
+
+ if (!sdelta->allow_core_count_adj && !sdelta->allow_temp_adj
+ && !sdelta->allow_boost) {
+ /*
+ * Per-online-core, per-temperature and voltage boost
+ * adjustments are disabled for this aggregation corner.
+ */
+ return 0;
+ }
+
+ /* Ensure that CPR clocks are enabled before writing to registers. */
+ if (!cpr_enabled) {
+ rc = cpr3_clock_enable(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "clock enable failed, rc=%d\n", rc);
+ return rc;
+ }
+ ctrl->cpr_enabled = true;
+ }
+
+ max_core_count = sdelta->max_core_count;
+
+ if (sdelta->allow_core_count_adj || sdelta->allow_temp_adj) {
+ if (sdelta->allow_core_count_adj) {
+ /* Program TEMP_CORE0 to same margins as TEMP_CORE1 */
+ cpr3_write_temp_core_margin(ctrl,
+ CPR4_REG_MARGIN_TEMP_CORE(0),
+ &sdelta->table[0]);
+ }
+
+ for (i = 0; i < max_core_count; i++) {
+ index = i * sdelta->temp_band_count;
+ /*
+ * Program TEMP_COREi with voltage margin adjustments
+ * that need to be applied when the number of cores
+ * becomes i.
+ */
+ cpr3_write_temp_core_margin(ctrl,
+ CPR4_REG_MARGIN_TEMP_CORE(
+ sdelta->allow_core_count_adj
+ ? i + 1 : max_core_count),
+ &sdelta->table[index]);
+ }
+ }
+
+ if (sdelta->allow_boost) {
+ /* Program only boost_num_cores row of SDELTA */
+ cpr3_write_temp_core_margin(ctrl,
+ CPR4_REG_MARGIN_TEMP_CORE(sdelta->boost_num_cores),
+ &sdelta->boost_table[0]);
+ }
+
+ if (!sdelta->allow_core_count_adj && !sdelta->allow_boost) {
+ cpr3_masked_write(ctrl, CPR4_REG_MISC,
+ CPR4_MISC_MARGIN_TABLE_ROW_SELECT_MASK,
+ max_core_count
+ << CPR4_MISC_MARGIN_TABLE_ROW_SELECT_SHIFT);
+ }
+
+ cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
+ CPR4_MARGIN_ADJ_CTL_MAX_NUM_CORES_MASK
+ | CPR4_MARGIN_ADJ_CTL_CORE_ADJ_EN
+ | CPR4_MARGIN_ADJ_CTL_TEMP_ADJ_EN
+ | CPR4_MARGIN_ADJ_CTL_KV_MARGIN_ADJ_EN
+ | CPR4_MARGIN_ADJ_CTL_BOOST_EN,
+ max_core_count << CPR4_MARGIN_ADJ_CTL_MAX_NUM_CORES_SHIFT
+ | ((sdelta->allow_core_count_adj || sdelta->allow_boost)
+ ? CPR4_MARGIN_ADJ_CTL_CORE_ADJ_EN : 0)
+ | ((sdelta->allow_temp_adj && ctrl->supports_hw_closed_loop)
+ ? CPR4_MARGIN_ADJ_CTL_TEMP_ADJ_EN : 0)
+ | (((ctrl->use_hw_closed_loop && !sdelta->allow_boost)
+ || !ctrl->supports_hw_closed_loop)
+ ? CPR4_MARGIN_ADJ_CTL_KV_MARGIN_ADJ_EN : 0)
+ | (sdelta->allow_boost
+ ? CPR4_MARGIN_ADJ_CTL_BOOST_EN : 0));
+
+ /*
+ * Ensure that all previous CPR register writes have completed before
+ * continuing.
+ */
+ mb();
+
+ /* Turn off CPR clocks if they were off before this function call. */
+ if (!cpr_enabled) {
+ cpr3_clock_disable(ctrl);
+ ctrl->cpr_enabled = false;
+ }
+
+ return 0;
+}
+
+/**
+ * cpr3_regulator_init_ctrl() - performs hardware initialization of CPR
+ * controller registers
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_init_ctrl(struct cpr3_controller *ctrl)
+{
+ int i, j, k, m, rc;
+ u32 ro_used = 0;
+ u32 gcnt, cont_dly, up_down_dly, val;
+ u64 temp;
+ char *mode;
+
+ if (ctrl->core_clk) {
+ rc = clk_set_rate(ctrl->core_clk, ctrl->cpr_clock_rate);
+ if (rc) {
+ cpr3_err(ctrl, "clk_set_rate(core_clk, %u) failed, rc=%d\n",
+ ctrl->cpr_clock_rate, rc);
+ return rc;
+ }
+ }
+
+ rc = cpr3_clock_enable(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "clock enable failed, rc=%d\n", rc);
+ return rc;
+ }
+ ctrl->cpr_enabled = true;
+
+ /* Find all RO's used by any corner of any regulator. */
+ for (i = 0; i < ctrl->thread_count; i++)
+ for (j = 0; j < ctrl->thread[i].vreg_count; j++)
+ for (k = 0; k < ctrl->thread[i].vreg[j].corner_count;
+ k++)
+ for (m = 0; m < CPR3_RO_COUNT; m++)
+ if (ctrl->thread[i].vreg[j].corner[k].
+ target_quot[m])
+ ro_used |= BIT(m);
+
+ /* Configure the GCNT of the RO's that will be used */
+ gcnt = cpr3_regulator_get_gcnt(ctrl);
+ for (i = 0; i < CPR3_RO_COUNT; i++)
+ if (ro_used & BIT(i))
+ cpr3_write(ctrl, CPR3_REG_GCNT(i), gcnt);
+
+ /* Configure the loop delay time */
+ temp = (u64)ctrl->cpr_clock_rate * (u64)ctrl->loop_time;
+ do_div(temp, 1000000000);
+ cont_dly = temp;
+ if (ctrl->supports_hw_closed_loop
+ && ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3)
+ cpr3_write(ctrl, CPR3_REG_CPR_TIMER_MID_CONT, cont_dly);
+ else
+ cpr3_write(ctrl, CPR3_REG_CPR_TIMER_AUTO_CONT, cont_dly);
+
+ if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
+ temp = (u64)ctrl->cpr_clock_rate *
+ (u64)ctrl->up_down_delay_time;
+ do_div(temp, 1000000000);
+ up_down_dly = temp;
+ if (ctrl->supports_hw_closed_loop)
+ cpr3_write(ctrl, CPR3_REG_CPR_TIMER_UP_DN_CONT,
+ up_down_dly);
+ cpr3_debug(ctrl, "up_down_dly=%u, up_down_delay_time=%u ns\n",
+ up_down_dly, ctrl->up_down_delay_time);
+ }
+
+ cpr3_debug(ctrl, "cpr_clock_rate=%u HZ, sensor_time=%u ns, loop_time=%u ns, gcnt=%u, cont_dly=%u\n",
+ ctrl->cpr_clock_rate, ctrl->sensor_time, ctrl->loop_time,
+ gcnt, cont_dly);
+
+ /* Configure CPR sensor operation */
+ val = (ctrl->idle_clocks << CPR3_CPR_CTL_IDLE_CLOCKS_SHIFT)
+ & CPR3_CPR_CTL_IDLE_CLOCKS_MASK;
+ val |= (ctrl->count_mode << CPR3_CPR_CTL_COUNT_MODE_SHIFT)
+ & CPR3_CPR_CTL_COUNT_MODE_MASK;
+ val |= (ctrl->count_repeat << CPR3_CPR_CTL_COUNT_REPEAT_SHIFT)
+ & CPR3_CPR_CTL_COUNT_REPEAT_MASK;
+ cpr3_write(ctrl, CPR3_REG_CPR_CTL, val);
+
+ cpr3_debug(ctrl, "idle_clocks=%u, count_mode=%u, count_repeat=%u; CPR_CTL=0x%08X\n",
+ ctrl->idle_clocks, ctrl->count_mode, ctrl->count_repeat, val);
+
+ /* Configure CPR default step quotients */
+ val = (ctrl->step_quot_init_min << CPR3_CPR_STEP_QUOT_MIN_SHIFT)
+ & CPR3_CPR_STEP_QUOT_MIN_MASK;
+ val |= (ctrl->step_quot_init_max << CPR3_CPR_STEP_QUOT_MAX_SHIFT)
+ & CPR3_CPR_STEP_QUOT_MAX_MASK;
+ cpr3_write(ctrl, CPR3_REG_CPR_STEP_QUOT, val);
+
+ cpr3_debug(ctrl, "step_quot_min=%u, step_quot_max=%u; STEP_QUOT=0x%08X\n",
+ ctrl->step_quot_init_min, ctrl->step_quot_init_max, val);
+
+ /* Configure the CPR sensor ownership */
+ for (i = 0; i < ctrl->sensor_count; i++)
+ cpr3_write(ctrl, CPR3_REG_SENSOR_OWNER(i),
+ ctrl->sensor_owner[i]);
+
+ /* Configure per-thread registers */
+ for (i = 0; i < ctrl->thread_count; i++) {
+ rc = cpr3_regulator_init_thread(&ctrl->thread[i]);
+ if (rc) {
+ cpr3_err(ctrl, "CPR thread register initialization failed, rc=%d\n",
+ rc);
+ return rc;
+ }
+ }
+
+ if (ctrl->supports_hw_closed_loop) {
+ if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
+ cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
+ CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_EN_MASK,
+ ctrl->use_hw_closed_loop
+ ? CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_ENABLE
+ : CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_DISABLE);
+ } else if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
+ cpr3_write(ctrl, CPR3_REG_HW_CLOSED_LOOP,
+ ctrl->use_hw_closed_loop
+ ? CPR3_HW_CLOSED_LOOP_ENABLE
+ : CPR3_HW_CLOSED_LOOP_DISABLE);
+
+ cpr3_debug(ctrl, "PD_THROTTLE=0x%08X\n",
+ ctrl->proc_clock_throttle);
+ }
+
+ if ((ctrl->use_hw_closed_loop ||
+ ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) &&
+ ctrl->vdd_limit_regulator) {
+ rc = regulator_enable(ctrl->vdd_limit_regulator);
+ if (rc) {
+ cpr3_err(ctrl, "CPR limit regulator enable failed, rc=%d\n",
+ rc);
+ return rc;
+ }
+ }
+ }
+
+ if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
+ rc = cpr3_regulator_init_cpr4(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "CPR4-specific controller initialization failed, rc=%d\n",
+ rc);
+ return rc;
+ }
+ }
+
+ /* Ensure that all register writes complete before disabling clocks. */
+ wmb();
+
+ cpr3_clock_disable(ctrl);
+ ctrl->cpr_enabled = false;
+
+ if (!ctrl->cpr_allowed_sw || !ctrl->cpr_allowed_hw)
+ mode = "open-loop";
+ else if (ctrl->supports_hw_closed_loop)
+ mode = ctrl->use_hw_closed_loop
+ ? "HW closed-loop" : "SW closed-loop";
+ else
+ mode = "closed-loop";
+
+ cpr3_info(ctrl, "Default CPR mode = %s", mode);
+
+ return 0;
+}
+
+/**
+ * cpr3_regulator_set_target_quot() - configure the target quotient for each
+ * RO of the CPR3 thread and set the RO mask
+ * @thread: Pointer to the CPR3 thread
+ *
+ * Return: none
+ */
+static void cpr3_regulator_set_target_quot(struct cpr3_thread *thread)
+{
+ u32 new_quot, last_quot;
+ int i;
+
+ if (thread->aggr_corner.ro_mask == CPR3_RO_MASK
+ && thread->last_closed_loop_aggr_corner.ro_mask == CPR3_RO_MASK) {
+ /* Avoid writing target quotients since all RO's are masked. */
+ return;
+ } else if (thread->aggr_corner.ro_mask == CPR3_RO_MASK) {
+ cpr3_write(thread->ctrl, CPR3_REG_RO_MASK(thread->thread_id),
+ CPR3_RO_MASK);
+ thread->last_closed_loop_aggr_corner.ro_mask = CPR3_RO_MASK;
+ /*
+ * Only the RO_MASK register needs to be written since all
+ * RO's are masked.
+ */
+ return;
+ } else if (thread->aggr_corner.ro_mask
+ != thread->last_closed_loop_aggr_corner.ro_mask) {
+ cpr3_write(thread->ctrl, CPR3_REG_RO_MASK(thread->thread_id),
+ thread->aggr_corner.ro_mask);
+ }
+
+ for (i = 0; i < CPR3_RO_COUNT; i++) {
+ new_quot = thread->aggr_corner.target_quot[i];
+ last_quot = thread->last_closed_loop_aggr_corner.target_quot[i];
+ if (new_quot != last_quot)
+ cpr3_write(thread->ctrl,
+ CPR3_REG_TARGET_QUOT(thread->thread_id, i),
+ new_quot);
+ }
+
+ thread->last_closed_loop_aggr_corner = thread->aggr_corner;
+
+ return;
+}
+
+/**
+ * cpr3_update_vreg_closed_loop_volt() - update the last known settled
+ * closed loop voltage for a CPR3 regulator
+ * @vreg: Pointer to the CPR3 regulator
+ * @vdd_volt: Last known settled voltage in microvolts for the
+ * VDD supply
+ * @reg_last_measurement: Value read from the LAST_MEASUREMENT register
+ *
+ * Return: none
+ */
+static void cpr3_update_vreg_closed_loop_volt(struct cpr3_regulator *vreg,
+ int vdd_volt, u32 reg_last_measurement)
+{
+ bool step_dn, step_up, aggr_step_up, aggr_step_dn, aggr_step_mid;
+ bool valid, pd_valid, saw_error;
+ struct cpr3_controller *ctrl = vreg->thread->ctrl;
+ struct cpr3_corner *corner;
+ u32 id;
+
+ if (vreg->last_closed_loop_corner == CPR3_REGULATOR_CORNER_INVALID)
+ return;
+ else
+ corner = &vreg->corner[vreg->last_closed_loop_corner];
+
+ if (vreg->thread->last_closed_loop_aggr_corner.ro_mask
+ == CPR3_RO_MASK || !vreg->aggregated) {
+ return;
+ } else if (!ctrl->cpr_enabled || !ctrl->last_corner_was_closed_loop) {
+ return;
+ } else if (ctrl->thread_count == 1
+ && vdd_volt >= corner->floor_volt
+ && vdd_volt <= corner->ceiling_volt) {
+ corner->last_volt = vdd_volt;
+ cpr3_debug(vreg, "last_volt updated: last_volt[%d]=%d, ceiling_volt[%d]=%d, floor_volt[%d]=%d\n",
+ vreg->last_closed_loop_corner, corner->last_volt,
+ vreg->last_closed_loop_corner,
+ corner->ceiling_volt,
+ vreg->last_closed_loop_corner,
+ corner->floor_volt);
+ return;
+ } else if (!ctrl->supports_hw_closed_loop) {
+ return;
+ } else if (ctrl->ctrl_type != CPR_CTRL_TYPE_CPR3) {
+ corner->last_volt = vdd_volt;
+ cpr3_debug(vreg, "last_volt updated: last_volt[%d]=%d, ceiling_volt[%d]=%d, floor_volt[%d]=%d\n",
+ vreg->last_closed_loop_corner, corner->last_volt,
+ vreg->last_closed_loop_corner,
+ corner->ceiling_volt,
+ vreg->last_closed_loop_corner,
+ corner->floor_volt);
+ return;
+ }
+
+ /* CPR clocks are on and HW closed loop is supported */
+ valid = !!(reg_last_measurement & CPR3_LAST_MEASUREMENT_VALID);
+ if (!valid) {
+ cpr3_debug(vreg, "CPR_LAST_VALID_MEASUREMENT=0x%X valid bit not set\n",
+ reg_last_measurement);
+ return;
+ }
+
+ id = vreg->thread->thread_id;
+
+ step_dn
+ = !!(reg_last_measurement & CPR3_LAST_MEASUREMENT_THREAD_DN(id));
+ step_up
+ = !!(reg_last_measurement & CPR3_LAST_MEASUREMENT_THREAD_UP(id));
+ aggr_step_dn = !!(reg_last_measurement & CPR3_LAST_MEASUREMENT_AGGR_DN);
+ aggr_step_mid
+ = !!(reg_last_measurement & CPR3_LAST_MEASUREMENT_AGGR_MID);
+ aggr_step_up = !!(reg_last_measurement & CPR3_LAST_MEASUREMENT_AGGR_UP);
+ saw_error = !!(reg_last_measurement & CPR3_LAST_MEASUREMENT_SAW_ERROR);
+ pd_valid
+ = !((((reg_last_measurement & CPR3_LAST_MEASUREMENT_PD_BYPASS_MASK)
+ >> CPR3_LAST_MEASUREMENT_PD_BYPASS_SHIFT)
+ & vreg->pd_bypass_mask) == vreg->pd_bypass_mask);
+
+ if (!pd_valid) {
+ cpr3_debug(vreg, "CPR_LAST_VALID_MEASUREMENT=0x%X, all power domains bypassed\n",
+ reg_last_measurement);
+ return;
+ } else if (step_dn && step_up) {
+ cpr3_err(vreg, "both up and down status bits set, CPR_LAST_VALID_MEASUREMENT=0x%X\n",
+ reg_last_measurement);
+ return;
+ } else if (aggr_step_dn && step_dn && vdd_volt < corner->last_volt
+ && vdd_volt >= corner->floor_volt) {
+ corner->last_volt = vdd_volt;
+ } else if (aggr_step_up && step_up && vdd_volt > corner->last_volt
+ && vdd_volt <= corner->ceiling_volt) {
+ corner->last_volt = vdd_volt;
+ } else if (aggr_step_mid
+ && vdd_volt >= corner->floor_volt
+ && vdd_volt <= corner->ceiling_volt) {
+ corner->last_volt = vdd_volt;
+ } else if (saw_error && (vdd_volt == corner->ceiling_volt
+ || vdd_volt == corner->floor_volt)) {
+ corner->last_volt = vdd_volt;
+ } else {
+ cpr3_debug(vreg, "last_volt not updated: last_volt[%d]=%d, ceiling_volt[%d]=%d, floor_volt[%d]=%d, vdd_volt=%d, CPR_LAST_VALID_MEASUREMENT=0x%X\n",
+ vreg->last_closed_loop_corner, corner->last_volt,
+ vreg->last_closed_loop_corner,
+ corner->ceiling_volt,
+ vreg->last_closed_loop_corner, corner->floor_volt,
+ vdd_volt, reg_last_measurement);
+ return;
+ }
+
+ cpr3_debug(vreg, "last_volt updated: last_volt[%d]=%d, ceiling_volt[%d]=%d, floor_volt[%d]=%d, CPR_LAST_VALID_MEASUREMENT=0x%X\n",
+ vreg->last_closed_loop_corner, corner->last_volt,
+ vreg->last_closed_loop_corner, corner->ceiling_volt,
+ vreg->last_closed_loop_corner, corner->floor_volt,
+ reg_last_measurement);
+}
+
+/**
+ * cpr3_regulator_mem_acc_bhs_used() - determines if mem-acc regulators powered
+ * through a BHS are associated with the CPR3 controller or any of
+ * the CPR3 regulators it controls.
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * This function determines if the CPR3 controller or any of its CPR3 regulators
+ * need to manage mem-acc regulators that are currently powered through a BHS
+ * and whose corner selection is based upon a particular voltage threshold.
+ *
+ * Return: true or false
+ */
+static bool cpr3_regulator_mem_acc_bhs_used(struct cpr3_controller *ctrl)
+{
+ struct cpr3_regulator *vreg;
+ int i, j;
+
+ if (!ctrl->mem_acc_threshold_volt)
+ return false;
+
+ if (ctrl->mem_acc_regulator)
+ return true;
+
+ for (i = 0; i < ctrl->thread_count; i++) {
+ for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
+ vreg = &ctrl->thread[i].vreg[j];
+
+ if (vreg->mem_acc_regulator)
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/**
+ * cpr3_regulator_config_bhs_mem_acc() - configure the mem-acc regulator
+ * settings for hardware blocks currently powered through the BHS.
+ * @ctrl: Pointer to the CPR3 controller
+ * @new_volt: New voltage in microvolts that VDD supply needs to
+ * end up at
+ * @last_volt: Pointer to the last known voltage in microvolts for the
+ * VDD supply
+ * @aggr_corner: Pointer to the CPR3 corner which corresponds to the max
+ * corner aggregated from all CPR3 threads managed by the
+ * CPR3 controller
+ *
+ * This function programs the mem-acc regulator corners for CPR3 regulators
+ * whose LDO regulators are in bypassed state. The function also handles
+ * CPR3 controllers which utilize mem-acc regulators that operate independently
+ * from the LDO hardware and that must be programmed when the VDD supply
+ * crosses a particular voltage threshold.
+ *
+ * Return: 0 on success, errno on failure. If the VDD supply voltage is
+ * modified, last_volt is updated to reflect the new voltage setpoint.
+ */
+static int cpr3_regulator_config_bhs_mem_acc(struct cpr3_controller *ctrl,
+ int new_volt, int *last_volt,
+ struct cpr3_corner *aggr_corner)
+{
+ struct cpr3_regulator *vreg;
+ int i, j, rc, mem_acc_corn, safe_volt;
+ int mem_acc_volt = ctrl->mem_acc_threshold_volt;
+ int ref_volt;
+
+ if (!cpr3_regulator_mem_acc_bhs_used(ctrl))
+ return 0;
+
+ ref_volt = ctrl->use_hw_closed_loop ? aggr_corner->floor_volt :
+ new_volt;
+
+ if (((*last_volt < mem_acc_volt && mem_acc_volt <= ref_volt) ||
+ (*last_volt >= mem_acc_volt && mem_acc_volt > ref_volt))) {
+ if (ref_volt < *last_volt)
+ safe_volt = max(mem_acc_volt, aggr_corner->last_volt);
+ else
+ safe_volt = max(mem_acc_volt, *last_volt);
+
+ rc = regulator_set_voltage(ctrl->vdd_regulator, safe_volt,
+ new_volt < *last_volt ?
+ ctrl->aggr_corner.ceiling_volt :
+ new_volt);
+ if (rc) {
+ cpr3_err(ctrl, "regulator_set_voltage(vdd) == %d failed, rc=%d\n",
+ safe_volt, rc);
+ return rc;
+ }
+
+ *last_volt = safe_volt;
+
+ mem_acc_corn = ref_volt < mem_acc_volt ?
+ ctrl->mem_acc_corner_map[CPR3_MEM_ACC_LOW_CORNER] :
+ ctrl->mem_acc_corner_map[CPR3_MEM_ACC_HIGH_CORNER];
+
+ if (ctrl->mem_acc_regulator) {
+ rc = regulator_set_voltage(ctrl->mem_acc_regulator,
+ mem_acc_corn, mem_acc_corn);
+ if (rc) {
+ cpr3_err(ctrl, "regulator_set_voltage(mem_acc) == %d failed, rc=%d\n",
+ mem_acc_corn, rc);
+ return rc;
+ }
+ }
+
+ for (i = 0; i < ctrl->thread_count; i++) {
+ for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
+ vreg = &ctrl->thread[i].vreg[j];
+
+ if (!vreg->mem_acc_regulator)
+ continue;
+
+ rc = regulator_set_voltage(
+ vreg->mem_acc_regulator, mem_acc_corn,
+ mem_acc_corn);
+ if (rc) {
+ cpr3_err(vreg, "regulator_set_voltage(mem_acc) == %d failed, rc=%d\n",
+ mem_acc_corn, rc);
+ return rc;
+ }
+ }
+ }
+ }
+
+ return 0;
+}
+
+/**
+ * cpr3_regulator_switch_apm_mode() - switch the mode of the APM controller
+ * associated with a given CPR3 controller
+ * @ctrl: Pointer to the CPR3 controller
+ * @new_volt: New voltage in microvolts that VDD supply needs to
+ * end up at
+ * @last_volt: Pointer to the last known voltage in microvolts for the
+ * VDD supply
+ * @aggr_corner: Pointer to the CPR3 corner which corresponds to the max
+ * corner aggregated from all CPR3 threads managed by the
+ * CPR3 controller
+ *
+ * This function requests a switch of the APM mode while guaranteeing
+ * any LDO regulator hardware requirements are satisfied. The function must
+ * be called once it is known a new VDD supply setpoint crosses the APM
+ * voltage threshold.
+ *
+ * Return: 0 on success, errno on failure. If the VDD supply voltage is
+ * modified, last_volt is updated to reflect the new voltage setpoint.
+ */
+static int cpr3_regulator_switch_apm_mode(struct cpr3_controller *ctrl,
+ int new_volt, int *last_volt,
+ struct cpr3_corner *aggr_corner)
+{
+ struct regulator *vdd = ctrl->vdd_regulator;
+ int apm_volt = ctrl->apm_threshold_volt;
+ int orig_last_volt = *last_volt;
+ int rc;
+
+ rc = regulator_set_voltage(vdd, apm_volt, apm_volt);
+ if (rc) {
+ cpr3_err(ctrl, "regulator_set_voltage(vdd) == %d failed, rc=%d\n",
+ apm_volt, rc);
+ return rc;
+ }
+
+ *last_volt = apm_volt;
+
+ rc = msm_apm_set_supply(ctrl->apm, new_volt >= apm_volt
+ ? ctrl->apm_high_supply : ctrl->apm_low_supply);
+ if (rc) {
+ cpr3_err(ctrl, "APM switch failed, rc=%d\n", rc);
+ /* Roll back the voltage. */
+ regulator_set_voltage(vdd, orig_last_volt, INT_MAX);
+ *last_volt = orig_last_volt;
+ return rc;
+ }
+ return 0;
+}
+
+/**
+ * cpr3_regulator_config_voltage_crossings() - configure APM and mem-acc
+ * settings depending upon a new VDD supply setpoint
+ *
+ * @ctrl: Pointer to the CPR3 controller
+ * @new_volt: New voltage in microvolts that VDD supply needs to
+ * end up at
+ * @last_volt: Pointer to the last known voltage in microvolts for the
+ * VDD supply
+ * @aggr_corner: Pointer to the CPR3 corner which corresponds to the max
+ * corner aggregated from all CPR3 threads managed by the
+ * CPR3 controller
+ *
+ * This function handles the APM and mem-acc regulator reconfiguration if
+ * the new VDD supply voltage will result in crossing their respective voltage
+ * thresholds.
+ *
+ * Return: 0 on success, errno on failure. If the VDD supply voltage is
+ * modified, last_volt is updated to reflect the new voltage setpoint.
+ */
+static int cpr3_regulator_config_voltage_crossings(struct cpr3_controller *ctrl,
+ int new_volt, int *last_volt,
+ struct cpr3_corner *aggr_corner)
+{
+ bool apm_crossing = false, mem_acc_crossing = false;
+ bool mem_acc_bhs_used;
+ int apm_volt = ctrl->apm_threshold_volt;
+ int mem_acc_volt = ctrl->mem_acc_threshold_volt;
+ int ref_volt, rc;
+
+ if (ctrl->apm && apm_volt > 0
+ && ((*last_volt < apm_volt && apm_volt <= new_volt)
+ || (*last_volt >= apm_volt && apm_volt > new_volt)))
+ apm_crossing = true;
+
+ mem_acc_bhs_used = cpr3_regulator_mem_acc_bhs_used(ctrl);
+
+ ref_volt = ctrl->use_hw_closed_loop ? aggr_corner->floor_volt :
+ new_volt;
+
+ if (mem_acc_bhs_used &&
+ (((*last_volt < mem_acc_volt && mem_acc_volt <= ref_volt) ||
+ (*last_volt >= mem_acc_volt && mem_acc_volt > ref_volt))))
+ mem_acc_crossing = true;
+
+ if (apm_crossing && mem_acc_crossing) {
+ if ((new_volt < *last_volt && apm_volt >= mem_acc_volt) ||
+ (new_volt >= *last_volt && apm_volt < mem_acc_volt)) {
+ rc = cpr3_regulator_switch_apm_mode(ctrl, new_volt,
+ last_volt,
+ aggr_corner);
+ if (rc) {
+ cpr3_err(ctrl, "unable to switch APM mode\n");
+ return rc;
+ }
+
+ rc = cpr3_regulator_config_bhs_mem_acc(ctrl, new_volt,
+ last_volt, aggr_corner);
+ if (rc) {
+ cpr3_err(ctrl, "unable to configure BHS mem-acc settings\n");
+ return rc;
+ }
+ } else {
+ rc = cpr3_regulator_config_bhs_mem_acc(ctrl, new_volt,
+ last_volt, aggr_corner);
+ if (rc) {
+ cpr3_err(ctrl, "unable to configure BHS mem-acc settings\n");
+ return rc;
+ }
+
+ rc = cpr3_regulator_switch_apm_mode(ctrl, new_volt,
+ last_volt,
+ aggr_corner);
+ if (rc) {
+ cpr3_err(ctrl, "unable to switch APM mode\n");
+ return rc;
+ }
+ }
+ } else if (apm_crossing) {
+ rc = cpr3_regulator_switch_apm_mode(ctrl, new_volt, last_volt,
+ aggr_corner);
+ if (rc) {
+ cpr3_err(ctrl, "unable to switch APM mode\n");
+ return rc;
+ }
+ } else if (mem_acc_crossing) {
+ rc = cpr3_regulator_config_bhs_mem_acc(ctrl, new_volt,
+ last_volt, aggr_corner);
+ if (rc) {
+ cpr3_err(ctrl, "unable to configure BHS mem-acc settings\n");
+ return rc;
+ }
+ }
+
+ return 0;
+}
+
+/**
+ * cpr3_regulator_config_mem_acc() - configure the corner of the mem-acc
+ * regulator associated with the CPR3 controller
+ * @ctrl: Pointer to the CPR3 controller
+ * @aggr_corner: Pointer to the CPR3 corner which corresponds to the max
+ * corner aggregated from all CPR3 threads managed by the
+ * CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_config_mem_acc(struct cpr3_controller *ctrl,
+ struct cpr3_corner *aggr_corner)
+{
+ int rc;
+
+ if (ctrl->mem_acc_regulator && aggr_corner->mem_acc_volt) {
+ rc = regulator_set_voltage(ctrl->mem_acc_regulator,
+ aggr_corner->mem_acc_volt,
+ aggr_corner->mem_acc_volt);
+ if (rc) {
+ cpr3_err(ctrl, "regulator_set_voltage(mem_acc) == %d failed, rc=%d\n",
+ aggr_corner->mem_acc_volt, rc);
+ return rc;
+ }
+ }
+
+ return 0;
+}
+
+/**
+ * cpr3_regulator_scale_vdd_voltage() - scale the CPR controlled VDD supply
+ * voltage to the new level while satisfying any other hardware
+ * requirements
+ * @ctrl: Pointer to the CPR3 controller
+ * @new_volt: New voltage in microvolts that VDD supply needs to end
+ * up at
+ * @last_volt: Last known voltage in microvolts for the VDD supply
+ * @aggr_corner: Pointer to the CPR3 corner which corresponds to the max
+ * corner aggregated from all CPR3 threads managed by the
+ * CPR3 controller
+ *
+ * This function scales the CPR controlled VDD supply voltage from its
+ * current level to the new voltage that is specified. If the supply is
+ * configured to use the APM and the APM threshold is crossed as a result of
+ * the voltage scaling, then this function also stops at the APM threshold,
+ * switches the APM source, and finally sets the final new voltage.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_scale_vdd_voltage(struct cpr3_controller *ctrl,
+ int new_volt, int last_volt,
+ struct cpr3_corner *aggr_corner)
+{
+ struct regulator *vdd = ctrl->vdd_regulator;
+ int rc;
+
+ if (new_volt < last_volt) {
+ rc = cpr3_regulator_config_mem_acc(ctrl, aggr_corner);
+ if (rc)
+ return rc;
+ } else {
+ /* Increasing VDD voltage */
+ if (ctrl->system_regulator) {
+ rc = regulator_set_voltage(ctrl->system_regulator,
+ aggr_corner->system_volt, INT_MAX);
+ if (rc) {
+ cpr3_err(ctrl, "regulator_set_voltage(system) == %d failed, rc=%d\n",
+ aggr_corner->system_volt, rc);
+ return rc;
+ }
+ }
+ }
+
+ rc = cpr3_regulator_config_voltage_crossings(ctrl, new_volt, &last_volt,
+ aggr_corner);
+ if (rc) {
+ cpr3_err(ctrl, "unable to handle voltage threshold crossing configurations, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ /*
+ * Subtract a small amount from the min_uV parameter so that the
+ * set voltage request is not dropped by the framework due to being
+ * duplicate. This is needed in order to switch from hardware
+ * closed-loop to open-loop successfully.
+ */
+ rc = regulator_set_voltage(vdd, new_volt - (ctrl->cpr_enabled ? 0 : 1),
+ aggr_corner->ceiling_volt);
+ if (rc) {
+ cpr3_err(ctrl, "regulator_set_voltage(vdd) == %d failed, rc=%d\n",
+ new_volt, rc);
+ return rc;
+ }
+
+ if (new_volt == last_volt && ctrl->supports_hw_closed_loop
+ && ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
+ /*
+ * CPR4 features enforce voltage reprogramming when the last
+ * set voltage and new set voltage are same. This way, we can
+ * ensure that SAW PMIC STATUS register is updated with newly
+ * programmed voltage.
+ */
+ rc = regulator_sync_voltage(vdd);
+ if (rc) {
+ cpr3_err(ctrl, "regulator_sync_voltage(vdd) == %d failed, rc=%d\n",
+ new_volt, rc);
+ return rc;
+ }
+ }
+
+ if (new_volt >= last_volt) {
+ rc = cpr3_regulator_config_mem_acc(ctrl, aggr_corner);
+ if (rc)
+ return rc;
+ } else {
+ /* Decreasing VDD voltage */
+ if (ctrl->system_regulator) {
+ rc = regulator_set_voltage(ctrl->system_regulator,
+ aggr_corner->system_volt, INT_MAX);
+ if (rc) {
+ cpr3_err(ctrl, "regulator_set_voltage(system) == %d failed, rc=%d\n",
+ aggr_corner->system_volt, rc);
+ return rc;
+ }
+ }
+ }
+
+ return 0;
+}
+
+/**
+ * cpr3_regulator_get_dynamic_floor_volt() - returns the current dynamic floor
+ * voltage based upon static configurations and the state of all
+ * power domains during the last CPR measurement
+ * @ctrl: Pointer to the CPR3 controller
+ * @reg_last_measurement: Value read from the LAST_MEASUREMENT register
+ *
+ * When using HW closed-loop, the dynamic floor voltage is always returned
+ * regardless of the current state of the power domains.
+ *
+ * Return: dynamic floor voltage in microvolts or 0 if dynamic floor is not
+ * currently required
+ */
+static int cpr3_regulator_get_dynamic_floor_volt(struct cpr3_controller *ctrl,
+ u32 reg_last_measurement)
+{
+ int dynamic_floor_volt = 0;
+ struct cpr3_regulator *vreg;
+ bool valid, pd_valid;
+ u32 bypass_bits;
+ int i, j;
+
+ if (!ctrl->supports_hw_closed_loop)
+ return 0;
+
+ if (likely(!ctrl->use_hw_closed_loop)) {
+ valid = !!(reg_last_measurement & CPR3_LAST_MEASUREMENT_VALID);
+ bypass_bits
+ = (reg_last_measurement & CPR3_LAST_MEASUREMENT_PD_BYPASS_MASK)
+ >> CPR3_LAST_MEASUREMENT_PD_BYPASS_SHIFT;
+ } else {
+ /*
+ * Ensure that the dynamic floor voltage is always used for
+ * HW closed-loop since the conditions below cannot be evaluated
+ * after each CPR measurement.
+ */
+ valid = false;
+ bypass_bits = 0;
+ }
+
+ for (i = 0; i < ctrl->thread_count; i++) {
+ for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
+ vreg = &ctrl->thread[i].vreg[j];
+
+ if (!vreg->uses_dynamic_floor)
+ continue;
+
+ pd_valid = !((bypass_bits & vreg->pd_bypass_mask)
+ == vreg->pd_bypass_mask);
+
+ if (!valid || !pd_valid)
+ dynamic_floor_volt = max(dynamic_floor_volt,
+ vreg->corner[
+ vreg->dynamic_floor_corner].last_volt);
+ }
+ }
+
+ return dynamic_floor_volt;
+}
+
+/**
+ * cpr3_regulator_max_sdelta_diff() - returns the maximum voltage difference in
+ * microvolts that can result from different operating conditions
+ * for the specified sdelta struct
+ * @sdelta: Pointer to the sdelta structure
+ * @step_volt: Step size in microvolts between available set
+ * points of the VDD supply.
+ *
+ * Return: voltage difference between the highest and lowest adjustments if
+ * sdelta and sdelta->table are valid, else 0.
+ */
+static int cpr3_regulator_max_sdelta_diff(const struct cpr4_sdelta *sdelta,
+ int step_volt)
+{
+ int i, j, index, sdelta_min = INT_MAX, sdelta_max = INT_MIN;
+
+ if (!sdelta || !sdelta->table)
+ return 0;
+
+ for (i = 0; i < sdelta->max_core_count; i++) {
+ for (j = 0; j < sdelta->temp_band_count; j++) {
+ index = i * sdelta->temp_band_count + j;
+ sdelta_min = min(sdelta_min, sdelta->table[index]);
+ sdelta_max = max(sdelta_max, sdelta->table[index]);
+ }
+ }
+
+ return (sdelta_max - sdelta_min) * step_volt;
+}
+
+/**
+ * cpr3_regulator_aggregate_sdelta() - check open-loop voltages of current
+ * aggregated corner and current corner of a given regulator
+ * and adjust the sdelta strucuture data of aggregate corner.
+ * @aggr_corner: Pointer to accumulated aggregated corner which
+ * is both an input and an output
+ * @corner: Pointer to the corner to be aggregated with
+ * aggr_corner
+ * @step_volt: Step size in microvolts between available set
+ * points of the VDD supply.
+ *
+ * Return: none
+ */
+static void cpr3_regulator_aggregate_sdelta(
+ struct cpr3_corner *aggr_corner,
+ const struct cpr3_corner *corner, int step_volt)
+{
+ struct cpr4_sdelta *aggr_sdelta, *sdelta;
+ int aggr_core_count, core_count, temp_band_count;
+ u32 aggr_index, index;
+ int i, j, sdelta_size, cap_steps, adjust_sdelta;
+
+ aggr_sdelta = aggr_corner->sdelta;
+ sdelta = corner->sdelta;
+
+ if (aggr_corner->open_loop_volt < corner->open_loop_volt) {
+ /*
+ * Found the new dominant regulator as its open-loop requirement
+ * is higher than previous dominant regulator. Calculate cap
+ * voltage to limit the SDELTA values to make sure the runtime
+ * (Core-count/temp) adjustments do not violate other
+ * regulators' voltage requirements. Use cpr4_sdelta values of
+ * new dominant regulator.
+ */
+ aggr_sdelta->cap_volt = min(aggr_sdelta->cap_volt,
+ (corner->open_loop_volt -
+ aggr_corner->open_loop_volt));
+
+ /* Clear old data in the sdelta table */
+ sdelta_size = aggr_sdelta->max_core_count
+ * aggr_sdelta->temp_band_count;
+
+ if (aggr_sdelta->allow_core_count_adj
+ || aggr_sdelta->allow_temp_adj)
+ memset(aggr_sdelta->table, 0, sdelta_size
+ * sizeof(*aggr_sdelta->table));
+
+ if (sdelta->allow_temp_adj || sdelta->allow_core_count_adj) {
+ /* Copy new data in sdelta table */
+ sdelta_size = sdelta->max_core_count
+ * sdelta->temp_band_count;
+ if (sdelta->table)
+ memcpy(aggr_sdelta->table, sdelta->table,
+ sdelta_size * sizeof(*sdelta->table));
+ }
+
+ if (sdelta->allow_boost) {
+ memcpy(aggr_sdelta->boost_table, sdelta->boost_table,
+ sdelta->temp_band_count
+ * sizeof(*sdelta->boost_table));
+ aggr_sdelta->boost_num_cores = sdelta->boost_num_cores;
+ } else if (aggr_sdelta->allow_boost) {
+ for (i = 0; i < aggr_sdelta->temp_band_count; i++) {
+ adjust_sdelta = (corner->open_loop_volt
+ - aggr_corner->open_loop_volt)
+ / step_volt;
+ aggr_sdelta->boost_table[i] += adjust_sdelta;
+ aggr_sdelta->boost_table[i]
+ = min(aggr_sdelta->boost_table[i], 0);
+ }
+ }
+
+ aggr_corner->open_loop_volt = corner->open_loop_volt;
+ aggr_sdelta->allow_temp_adj = sdelta->allow_temp_adj;
+ aggr_sdelta->allow_core_count_adj
+ = sdelta->allow_core_count_adj;
+ aggr_sdelta->max_core_count = sdelta->max_core_count;
+ aggr_sdelta->temp_band_count = sdelta->temp_band_count;
+ } else if (aggr_corner->open_loop_volt > corner->open_loop_volt) {
+ /*
+ * Adjust the cap voltage if the open-loop requirement of new
+ * regulator is the next highest.
+ */
+ aggr_sdelta->cap_volt = min(aggr_sdelta->cap_volt,
+ (aggr_corner->open_loop_volt
+ - corner->open_loop_volt));
+
+ if (sdelta->allow_boost) {
+ for (i = 0; i < aggr_sdelta->temp_band_count; i++) {
+ adjust_sdelta = (aggr_corner->open_loop_volt
+ - corner->open_loop_volt)
+ / step_volt;
+ aggr_sdelta->boost_table[i] =
+ sdelta->boost_table[i] + adjust_sdelta;
+ aggr_sdelta->boost_table[i]
+ = min(aggr_sdelta->boost_table[i], 0);
+ }
+ aggr_sdelta->boost_num_cores = sdelta->boost_num_cores;
+ }
+ } else {
+ /*
+ * Found another dominant regulator with same open-loop
+ * requirement. Make cap voltage to '0'. Disable core-count
+ * adjustments as we couldn't support for both regulators.
+ * Keep enable temp based adjustments if enabled for both
+ * regulators and choose mininum margin adjustment values
+ * between them.
+ */
+ aggr_sdelta->cap_volt = 0;
+ aggr_sdelta->allow_core_count_adj = false;
+
+ if (aggr_sdelta->allow_temp_adj
+ && sdelta->allow_temp_adj) {
+ aggr_core_count = aggr_sdelta->max_core_count - 1;
+ core_count = sdelta->max_core_count - 1;
+ temp_band_count = sdelta->temp_band_count;
+ for (j = 0; j < temp_band_count; j++) {
+ aggr_index = aggr_core_count * temp_band_count
+ + j;
+ index = core_count * temp_band_count + j;
+ aggr_sdelta->table[aggr_index] =
+ min(aggr_sdelta->table[aggr_index],
+ sdelta->table[index]);
+ }
+ } else {
+ aggr_sdelta->allow_temp_adj = false;
+ }
+
+ if (sdelta->allow_boost) {
+ memcpy(aggr_sdelta->boost_table, sdelta->boost_table,
+ sdelta->temp_band_count
+ * sizeof(*sdelta->boost_table));
+ aggr_sdelta->boost_num_cores = sdelta->boost_num_cores;
+ }
+ }
+
+ /* Keep non-dominant clients boost enable state */
+ aggr_sdelta->allow_boost |= sdelta->allow_boost;
+ if (aggr_sdelta->allow_boost)
+ aggr_sdelta->allow_core_count_adj = false;
+
+ if (aggr_sdelta->cap_volt && !(aggr_sdelta->cap_volt == INT_MAX)) {
+ core_count = aggr_sdelta->max_core_count;
+ temp_band_count = aggr_sdelta->temp_band_count;
+ /*
+ * Convert cap voltage from uV to PMIC steps and use to limit
+ * sdelta margin adjustments.
+ */
+ cap_steps = aggr_sdelta->cap_volt / step_volt;
+ for (i = 0; i < core_count; i++)
+ for (j = 0; j < temp_band_count; j++) {
+ index = i * temp_band_count + j;
+ aggr_sdelta->table[index] =
+ min(aggr_sdelta->table[index],
+ cap_steps);
+ }
+ }
+}
+
+/**
+ * cpr3_regulator_aggregate_corners() - aggregate two corners together
+ * @aggr_corner: Pointer to accumulated aggregated corner which
+ * is both an input and an output
+ * @corner: Pointer to the corner to be aggregated with
+ * aggr_corner
+ * @aggr_quot: Flag indicating that target quotients should be
+ * aggregated as well.
+ * @step_volt: Step size in microvolts between available set
+ * points of the VDD supply.
+ *
+ * Return: none
+ */
+static void cpr3_regulator_aggregate_corners(struct cpr3_corner *aggr_corner,
+ const struct cpr3_corner *corner, bool aggr_quot,
+ int step_volt)
+{
+ int i;
+
+ aggr_corner->ceiling_volt
+ = max(aggr_corner->ceiling_volt, corner->ceiling_volt);
+ aggr_corner->floor_volt
+ = max(aggr_corner->floor_volt, corner->floor_volt);
+ aggr_corner->last_volt
+ = max(aggr_corner->last_volt, corner->last_volt);
+ aggr_corner->system_volt
+ = max(aggr_corner->system_volt, corner->system_volt);
+ aggr_corner->mem_acc_volt
+ = max(aggr_corner->mem_acc_volt, corner->mem_acc_volt);
+ aggr_corner->irq_en |= corner->irq_en;
+ aggr_corner->use_open_loop |= corner->use_open_loop;
+
+ if (aggr_quot) {
+ aggr_corner->ro_mask &= corner->ro_mask;
+
+ for (i = 0; i < CPR3_RO_COUNT; i++)
+ aggr_corner->target_quot[i]
+ = max(aggr_corner->target_quot[i],
+ corner->target_quot[i]);
+ }
+
+ if (aggr_corner->sdelta && corner->sdelta
+ && (aggr_corner->sdelta->table
+ || aggr_corner->sdelta->boost_table)) {
+ cpr3_regulator_aggregate_sdelta(aggr_corner, corner, step_volt);
+ } else {
+ aggr_corner->open_loop_volt
+ = max(aggr_corner->open_loop_volt,
+ corner->open_loop_volt);
+ }
+}
+
+/**
+ * cpr3_regulator_update_ctrl_state() - update the state of the CPR controller
+ * to reflect the corners used by all CPR3 regulators as well as
+ * the CPR operating mode
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * This function aggregates the CPR parameters for all CPR3 regulators
+ * associated with the VDD supply. Upon success, it sets the aggregated last
+ * known good voltage.
+ *
+ * The VDD supply voltage will not be physically configured unless this
+ * condition is met by at least one of the regulators of the controller:
+ * regulator->vreg_enabled == true &&
+ * regulator->current_corner != CPR3_REGULATOR_CORNER_INVALID
+ *
+ * CPR registers for the controller and each thread are updated as long as
+ * ctrl->cpr_enabled == true.
+ *
+ * Note, CPR3 controller lock must be held by the caller.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int _cpr3_regulator_update_ctrl_state(struct cpr3_controller *ctrl)
+{
+ struct cpr3_corner aggr_corner = {};
+ struct cpr3_thread *thread;
+ struct cpr3_regulator *vreg;
+ struct cpr4_sdelta *sdelta;
+ bool valid = false;
+ bool thread_valid;
+ int i, j, rc, new_volt, vdd_volt, dynamic_floor_volt, last_corner_volt;
+ u32 reg_last_measurement = 0, sdelta_size;
+ int *sdelta_table, *boost_table;
+
+ last_corner_volt = 0;
+ if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
+ rc = cpr3_ctrl_clear_cpr4_config(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "failed to clear CPR4 configuration,rc=%d\n",
+ rc);
+ return rc;
+ }
+ }
+
+ cpr3_ctrl_loop_disable(ctrl);
+
+ vdd_volt = regulator_get_voltage(ctrl->vdd_regulator);
+ if (vdd_volt < 0) {
+ cpr3_err(ctrl, "regulator_get_voltage(vdd) failed, rc=%d\n",
+ vdd_volt);
+ return vdd_volt;
+ }
+
+ if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
+ /*
+ * Save aggregated corner open-loop voltage which was programmed
+ * during last corner switch which is used when programming new
+ * aggregated corner open-loop voltage.
+ */
+ last_corner_volt = ctrl->aggr_corner.open_loop_volt;
+ }
+
+ if (ctrl->cpr_enabled && ctrl->use_hw_closed_loop &&
+ ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3)
+ reg_last_measurement
+ = cpr3_read(ctrl, CPR3_REG_LAST_MEASUREMENT);
+
+ aggr_corner.sdelta = ctrl->aggr_corner.sdelta;
+ if (aggr_corner.sdelta) {
+ sdelta = aggr_corner.sdelta;
+ sdelta_table = sdelta->table;
+ if (sdelta_table) {
+ sdelta_size = sdelta->max_core_count *
+ sdelta->temp_band_count;
+ memset(sdelta_table, 0, sdelta_size
+ * sizeof(*sdelta_table));
+ }
+
+ boost_table = sdelta->boost_table;
+ if (boost_table)
+ memset(boost_table, 0, sdelta->temp_band_count
+ * sizeof(*boost_table));
+
+ memset(sdelta, 0, sizeof(*sdelta));
+ sdelta->table = sdelta_table;
+ sdelta->cap_volt = INT_MAX;
+ sdelta->boost_table = boost_table;
+ }
+
+ /* Aggregate the requests of all threads */
+ for (i = 0; i < ctrl->thread_count; i++) {
+ thread = &ctrl->thread[i];
+ thread_valid = false;
+
+ sdelta = thread->aggr_corner.sdelta;
+ if (sdelta) {
+ sdelta_table = sdelta->table;
+ if (sdelta_table) {
+ sdelta_size = sdelta->max_core_count *
+ sdelta->temp_band_count;
+ memset(sdelta_table, 0, sdelta_size
+ * sizeof(*sdelta_table));
+ }
+
+ boost_table = sdelta->boost_table;
+ if (boost_table)
+ memset(boost_table, 0, sdelta->temp_band_count
+ * sizeof(*boost_table));
+
+ memset(sdelta, 0, sizeof(*sdelta));
+ sdelta->table = sdelta_table;
+ sdelta->cap_volt = INT_MAX;
+ sdelta->boost_table = boost_table;
+ }
+
+ memset(&thread->aggr_corner, 0, sizeof(thread->aggr_corner));
+ thread->aggr_corner.sdelta = sdelta;
+ thread->aggr_corner.ro_mask = CPR3_RO_MASK;
+
+ for (j = 0; j < thread->vreg_count; j++) {
+ vreg = &thread->vreg[j];
+
+ if (ctrl->cpr_enabled && ctrl->use_hw_closed_loop)
+ cpr3_update_vreg_closed_loop_volt(vreg,
+ vdd_volt, reg_last_measurement);
+
+ if (!vreg->vreg_enabled
+ || vreg->current_corner
+ == CPR3_REGULATOR_CORNER_INVALID) {
+ /* Cannot participate in aggregation. */
+ vreg->aggregated = false;
+ continue;
+ } else {
+ vreg->aggregated = true;
+ thread_valid = true;
+ }
+
+ cpr3_regulator_aggregate_corners(&thread->aggr_corner,
+ &vreg->corner[vreg->current_corner],
+ true, ctrl->step_volt);
+ }
+
+ valid |= thread_valid;
+
+ if (thread_valid)
+ cpr3_regulator_aggregate_corners(&aggr_corner,
+ &thread->aggr_corner,
+ false, ctrl->step_volt);
+ }
+
+ if (valid && ctrl->cpr_allowed_hw && ctrl->cpr_allowed_sw) {
+ rc = cpr3_closed_loop_enable(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "could not enable CPR, rc=%d\n", rc);
+ return rc;
+ }
+ } else {
+ rc = cpr3_closed_loop_disable(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "could not disable CPR, rc=%d\n", rc);
+ return rc;
+ }
+ }
+
+ /* No threads are enabled with a valid corner so exit. */
+ if (!valid)
+ return 0;
+
+ /*
+ * When using CPR hardware closed-loop, the voltage may vary anywhere
+ * between the floor and ceiling voltage without software notification.
+ * Therefore, it is required that the floor to ceiling range for the
+ * aggregated corner not intersect the APM threshold voltage. Adjust
+ * the floor to ceiling range if this requirement is violated.
+ *
+ * The following algorithm is applied in the case that
+ * floor < threshold <= ceiling:
+ * if open_loop >= threshold - adj, then floor = threshold
+ * else ceiling = threshold - step
+ * where adj = an adjustment factor to ensure sufficient voltage margin
+ * and step = VDD output step size
+ *
+ * The open-loop and last known voltages are also bounded by the new
+ * floor or ceiling value as needed.
+ */
+ if (ctrl->use_hw_closed_loop
+ && aggr_corner.ceiling_volt >= ctrl->apm_threshold_volt
+ && aggr_corner.floor_volt < ctrl->apm_threshold_volt) {
+
+ if (aggr_corner.open_loop_volt
+ >= ctrl->apm_threshold_volt - ctrl->apm_adj_volt)
+ aggr_corner.floor_volt = ctrl->apm_threshold_volt;
+ else
+ aggr_corner.ceiling_volt
+ = ctrl->apm_threshold_volt - ctrl->step_volt;
+
+ aggr_corner.last_volt
+ = max(aggr_corner.last_volt, aggr_corner.floor_volt);
+ aggr_corner.last_volt
+ = min(aggr_corner.last_volt, aggr_corner.ceiling_volt);
+ aggr_corner.open_loop_volt
+ = max(aggr_corner.open_loop_volt, aggr_corner.floor_volt);
+ aggr_corner.open_loop_volt
+ = min(aggr_corner.open_loop_volt, aggr_corner.ceiling_volt);
+ }
+
+ if (ctrl->use_hw_closed_loop
+ && aggr_corner.ceiling_volt >= ctrl->mem_acc_threshold_volt
+ && aggr_corner.floor_volt < ctrl->mem_acc_threshold_volt) {
+ aggr_corner.floor_volt = ctrl->mem_acc_threshold_volt;
+ aggr_corner.last_volt = max(aggr_corner.last_volt,
+ aggr_corner.floor_volt);
+ aggr_corner.open_loop_volt = max(aggr_corner.open_loop_volt,
+ aggr_corner.floor_volt);
+ }
+
+ if (ctrl->use_hw_closed_loop) {
+ dynamic_floor_volt
+ = cpr3_regulator_get_dynamic_floor_volt(ctrl,
+ reg_last_measurement);
+ if (aggr_corner.floor_volt < dynamic_floor_volt) {
+ aggr_corner.floor_volt = dynamic_floor_volt;
+ aggr_corner.last_volt = max(aggr_corner.last_volt,
+ aggr_corner.floor_volt);
+ aggr_corner.open_loop_volt
+ = max(aggr_corner.open_loop_volt,
+ aggr_corner.floor_volt);
+ aggr_corner.ceiling_volt = max(aggr_corner.ceiling_volt,
+ aggr_corner.floor_volt);
+ }
+ }
+
+ if (ctrl->cpr_enabled && ctrl->last_corner_was_closed_loop) {
+ /*
+ * Always program open-loop voltage for CPR4 controllers which
+ * support hardware closed-loop. Storing the last closed loop
+ * voltage in corner structure can still help with debugging.
+ */
+ if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3)
+ new_volt = aggr_corner.last_volt;
+ else if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4
+ && ctrl->supports_hw_closed_loop)
+ new_volt = aggr_corner.open_loop_volt;
+ else
+ new_volt = min(aggr_corner.last_volt +
+ cpr3_regulator_max_sdelta_diff(aggr_corner.sdelta,
+ ctrl->step_volt),
+ aggr_corner.ceiling_volt);
+
+ aggr_corner.last_volt = new_volt;
+ } else {
+ new_volt = aggr_corner.open_loop_volt;
+ aggr_corner.last_volt = aggr_corner.open_loop_volt;
+ }
+
+ if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4
+ && ctrl->supports_hw_closed_loop) {
+ /*
+ * Store last aggregated corner open-loop voltage in vdd_volt
+ * which is used when programming current aggregated corner
+ * required voltage.
+ */
+ vdd_volt = last_corner_volt;
+ }
+
+ cpr3_debug(ctrl, "setting new voltage=%d uV\n", new_volt);
+ rc = cpr3_regulator_scale_vdd_voltage(ctrl, new_volt,
+ vdd_volt, &aggr_corner);
+ if (rc) {
+ cpr3_err(ctrl, "vdd voltage scaling failed, rc=%d\n", rc);
+ return rc;
+ }
+
+ /* Only update registers if CPR is enabled. */
+ if (ctrl->cpr_enabled) {
+ if (ctrl->use_hw_closed_loop) {
+ /* Hardware closed-loop */
+
+ /* Set ceiling and floor limits in hardware */
+ rc = regulator_set_voltage(ctrl->vdd_limit_regulator,
+ aggr_corner.floor_volt,
+ aggr_corner.ceiling_volt);
+ if (rc) {
+ cpr3_err(ctrl, "could not configure HW closed-loop voltage limits, rc=%d\n",
+ rc);
+ return rc;
+ }
+ } else {
+ /* Software closed-loop */
+
+ /*
+ * Disable UP or DOWN interrupts when at ceiling or
+ * floor respectively.
+ */
+ if (new_volt == aggr_corner.floor_volt)
+ aggr_corner.irq_en &= ~CPR3_IRQ_DOWN;
+ if (new_volt == aggr_corner.ceiling_volt)
+ aggr_corner.irq_en &= ~CPR3_IRQ_UP;
+
+ cpr3_write(ctrl, CPR3_REG_IRQ_CLEAR,
+ CPR3_IRQ_UP | CPR3_IRQ_DOWN);
+ cpr3_write(ctrl, CPR3_REG_IRQ_EN, aggr_corner.irq_en);
+ }
+
+ for (i = 0; i < ctrl->thread_count; i++) {
+ cpr3_regulator_set_target_quot(&ctrl->thread[i]);
+
+ for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
+ vreg = &ctrl->thread[i].vreg[j];
+
+ if (vreg->vreg_enabled)
+ vreg->last_closed_loop_corner
+ = vreg->current_corner;
+ }
+ }
+
+ if (ctrl->proc_clock_throttle) {
+ if (aggr_corner.ceiling_volt > aggr_corner.floor_volt
+ && (ctrl->use_hw_closed_loop
+ || new_volt < aggr_corner.ceiling_volt))
+ cpr3_write(ctrl, CPR3_REG_PD_THROTTLE,
+ ctrl->proc_clock_throttle);
+ else
+ cpr3_write(ctrl, CPR3_REG_PD_THROTTLE,
+ CPR3_PD_THROTTLE_DISABLE);
+ }
+
+ /*
+ * Ensure that all CPR register writes complete before
+ * re-enabling CPR loop operation.
+ */
+ wmb();
+ } else if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4
+ && ctrl->vdd_limit_regulator) {
+ /* Set ceiling and floor limits in hardware */
+ rc = regulator_set_voltage(ctrl->vdd_limit_regulator,
+ aggr_corner.floor_volt,
+ aggr_corner.ceiling_volt);
+ if (rc) {
+ cpr3_err(ctrl, "could not configure HW closed-loop voltage limits, rc=%d\n",
+ rc);
+ return rc;
+ }
+ }
+
+ ctrl->aggr_corner = aggr_corner;
+
+ if (ctrl->allow_core_count_adj || ctrl->allow_temp_adj
+ || ctrl->allow_boost) {
+ rc = cpr3_controller_program_sdelta(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "failed to program sdelta, rc=%d\n", rc);
+ return rc;
+ }
+ }
+
+ /*
+ * Only enable the CPR controller if it is possible to set more than
+ * one vdd-supply voltage.
+ */
+ if (aggr_corner.ceiling_volt > aggr_corner.floor_volt &&
+ !aggr_corner.use_open_loop)
+ cpr3_ctrl_loop_enable(ctrl);
+
+ ctrl->last_corner_was_closed_loop = ctrl->cpr_enabled;
+ cpr3_debug(ctrl, "CPR configuration updated\n");
+
+ return 0;
+}
+
+/**
+ * cpr3_regulator_wait_for_idle() - wait for the CPR controller to no longer be
+ * busy
+ * @ctrl: Pointer to the CPR3 controller
+ * @max_wait_ns: Max wait time in nanoseconds
+ *
+ * Return: 0 on success or -ETIMEDOUT if the controller was still busy after
+ * the maximum delay time
+ */
+static int cpr3_regulator_wait_for_idle(struct cpr3_controller *ctrl,
+ s64 max_wait_ns)
+{
+ ktime_t start, end;
+ s64 time_ns;
+ u32 reg;
+
+ /*
+ * Ensure that all previous CPR register writes have completed before
+ * checking the status register.
+ */
+ mb();
+
+ start = ktime_get();
+ do {
+ end = ktime_get();
+ time_ns = ktime_to_ns(ktime_sub(end, start));
+ if (time_ns > max_wait_ns) {
+ cpr3_err(ctrl, "CPR controller still busy after %lld us\n",
+ div_s64(time_ns, 1000));
+ return -ETIMEDOUT;
+ }
+ usleep_range(50, 100);
+ reg = cpr3_read(ctrl, CPR3_REG_CPR_STATUS);
+ } while (reg & CPR3_CPR_STATUS_BUSY_MASK);
+
+ return 0;
+}
+
+/**
+ * cmp_int() - int comparison function to be passed into the sort() function
+ * which leads to ascending sorting
+ * @a: First int value
+ * @b: Second int value
+ *
+ * Return: >0 if a > b, 0 if a == b, <0 if a < b
+ */
+static int cmp_int(const void *a, const void *b)
+{
+ return *(int *)a - *(int *)b;
+}
+
+/**
+ * cpr3_regulator_measure_aging() - measure the quotient difference for the
+ * specified CPR aging sensor
+ * @ctrl: Pointer to the CPR3 controller
+ * @aging_sensor: Aging sensor to measure
+ *
+ * Note that vdd-supply must be configured to the aging reference voltage before
+ * calling this function.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_measure_aging(struct cpr3_controller *ctrl,
+ struct cpr3_aging_sensor_info *aging_sensor)
+{
+ u32 mask, reg, result, quot_min, quot_max, sel_min, sel_max;
+ u32 quot_min_scaled, quot_max_scaled;
+ u32 gcnt, gcnt_ref, gcnt0_restore, gcnt1_restore, irq_restore;
+ u32 ro_mask_restore, cont_dly_restore, up_down_dly_restore = 0;
+ int quot_delta, quot_delta_scaled, quot_delta_scaled_sum;
+ int *quot_delta_results;
+ int rc, rc2, i, aging_measurement_count, filtered_count;
+ bool is_aging_measurement;
+
+ quot_delta_results = kcalloc(CPR3_AGING_MEASUREMENT_ITERATIONS,
+ sizeof(*quot_delta_results), GFP_KERNEL);
+ if (!quot_delta_results)
+ return -ENOMEM;
+
+ if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
+ rc = cpr3_ctrl_clear_cpr4_config(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "failed to clear CPR4 configuration,rc=%d\n",
+ rc);
+ kfree(quot_delta_results);
+ return rc;
+ }
+ }
+
+ cpr3_ctrl_loop_disable(ctrl);
+
+ /* Enable up, down, and mid CPR interrupts */
+ irq_restore = cpr3_read(ctrl, CPR3_REG_IRQ_EN);
+ cpr3_write(ctrl, CPR3_REG_IRQ_EN,
+ CPR3_IRQ_UP | CPR3_IRQ_DOWN | CPR3_IRQ_MID);
+
+ /* Ensure that the aging sensor is assigned to CPR thread 0 */
+ cpr3_write(ctrl, CPR3_REG_SENSOR_OWNER(aging_sensor->sensor_id), 0);
+
+ /* Switch from HW to SW closed-loop if necessary */
+ if (ctrl->supports_hw_closed_loop) {
+ if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
+ cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
+ CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_EN_MASK,
+ CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_DISABLE);
+ } else if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
+ cpr3_write(ctrl, CPR3_REG_HW_CLOSED_LOOP,
+ CPR3_HW_CLOSED_LOOP_DISABLE);
+ }
+ }
+
+ /* Configure the GCNT for RO0 and RO1 that are used for aging */
+ gcnt0_restore = cpr3_read(ctrl, CPR3_REG_GCNT(0));
+ gcnt1_restore = cpr3_read(ctrl, CPR3_REG_GCNT(1));
+ gcnt_ref = cpr3_regulator_get_gcnt(ctrl);
+ gcnt = gcnt_ref * 3 / 2;
+ cpr3_write(ctrl, CPR3_REG_GCNT(0), gcnt);
+ cpr3_write(ctrl, CPR3_REG_GCNT(1), gcnt);
+
+ /* Unmask all RO's */
+ ro_mask_restore = cpr3_read(ctrl, CPR3_REG_RO_MASK(0));
+ cpr3_write(ctrl, CPR3_REG_RO_MASK(0), 0);
+
+ /*
+ * Mask all sensors except for the one to measure and bypass all
+ * sensors in collapsible domains.
+ */
+ for (i = 0; i <= ctrl->sensor_count / 32; i++) {
+ mask = GENMASK(min(31, ctrl->sensor_count - i * 32), 0);
+ if (aging_sensor->sensor_id / 32 >= i
+ && aging_sensor->sensor_id / 32 < (i + 1))
+ mask &= ~BIT(aging_sensor->sensor_id % 32);
+ cpr3_write(ctrl, CPR3_REG_SENSOR_MASK_WRITE_BANK(i), mask);
+ cpr3_write(ctrl, CPR3_REG_SENSOR_BYPASS_WRITE_BANK(i),
+ aging_sensor->bypass_mask[i]);
+ }
+
+ /* Set CPR loop delays to 0 us */
+ if (ctrl->supports_hw_closed_loop
+ && ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
+ cont_dly_restore = cpr3_read(ctrl, CPR3_REG_CPR_TIMER_MID_CONT);
+ up_down_dly_restore = cpr3_read(ctrl,
+ CPR3_REG_CPR_TIMER_UP_DN_CONT);
+ cpr3_write(ctrl, CPR3_REG_CPR_TIMER_MID_CONT, 0);
+ cpr3_write(ctrl, CPR3_REG_CPR_TIMER_UP_DN_CONT, 0);
+ } else {
+ cont_dly_restore = cpr3_read(ctrl,
+ CPR3_REG_CPR_TIMER_AUTO_CONT);
+ cpr3_write(ctrl, CPR3_REG_CPR_TIMER_AUTO_CONT, 0);
+ }
+
+ /* Set count mode to all-at-once min with no repeat */
+ cpr3_masked_write(ctrl, CPR3_REG_CPR_CTL,
+ CPR3_CPR_CTL_COUNT_MODE_MASK | CPR3_CPR_CTL_COUNT_REPEAT_MASK,
+ CPR3_CPR_CTL_COUNT_MODE_ALL_AT_ONCE_MIN
+ << CPR3_CPR_CTL_COUNT_MODE_SHIFT);
+
+ cpr3_ctrl_loop_enable(ctrl);
+
+ rc = cpr3_regulator_wait_for_idle(ctrl,
+ CPR3_AGING_MEASUREMENT_TIMEOUT_NS);
+ if (rc)
+ goto cleanup;
+
+ /* Set count mode to all-at-once aging */
+ cpr3_masked_write(ctrl, CPR3_REG_CPR_CTL, CPR3_CPR_CTL_COUNT_MODE_MASK,
+ CPR3_CPR_CTL_COUNT_MODE_ALL_AT_ONCE_AGE
+ << CPR3_CPR_CTL_COUNT_MODE_SHIFT);
+
+ aging_measurement_count = 0;
+ for (i = 0; i < CPR3_AGING_MEASUREMENT_ITERATIONS; i++) {
+ /* Send CONT_NACK */
+ cpr3_write(ctrl, CPR3_REG_CONT_CMD, CPR3_CONT_CMD_NACK);
+
+ rc = cpr3_regulator_wait_for_idle(ctrl,
+ CPR3_AGING_MEASUREMENT_TIMEOUT_NS);
+ if (rc)
+ goto cleanup;
+
+ /* Check for PAGE_IS_AGE flag in status register */
+ reg = cpr3_read(ctrl, CPR3_REG_CPR_STATUS);
+ is_aging_measurement
+ = reg & CPR3_CPR_STATUS_AGING_MEASUREMENT_MASK;
+
+ /* Read CPR measurement results */
+ result = cpr3_read(ctrl, CPR3_REG_RESULT1(0));
+ quot_min = (result & CPR3_RESULT1_QUOT_MIN_MASK)
+ >> CPR3_RESULT1_QUOT_MIN_SHIFT;
+ quot_max = (result & CPR3_RESULT1_QUOT_MAX_MASK)
+ >> CPR3_RESULT1_QUOT_MAX_SHIFT;
+ sel_min = (result & CPR3_RESULT1_RO_MIN_MASK)
+ >> CPR3_RESULT1_RO_MIN_SHIFT;
+ sel_max = (result & CPR3_RESULT1_RO_MAX_MASK)
+ >> CPR3_RESULT1_RO_MAX_SHIFT;
+
+ /*
+ * Scale the quotients so that they are equivalent to the fused
+ * values. This accounts for the difference in measurement
+ * interval times.
+ */
+ quot_min_scaled = quot_min * (gcnt_ref + 1) / (gcnt + 1);
+ quot_max_scaled = quot_max * (gcnt_ref + 1) / (gcnt + 1);
+
+ if (sel_max == 1) {
+ quot_delta = quot_max - quot_min;
+ quot_delta_scaled = quot_max_scaled - quot_min_scaled;
+ } else {
+ quot_delta = quot_min - quot_max;
+ quot_delta_scaled = quot_min_scaled - quot_max_scaled;
+ }
+
+ if (is_aging_measurement)
+ quot_delta_results[aging_measurement_count++]
+ = quot_delta_scaled;
+
+ cpr3_debug(ctrl, "aging results: page_is_age=%u, sel_min=%u, sel_max=%u, quot_min=%u, quot_max=%u, quot_delta=%d, quot_min_scaled=%u, quot_max_scaled=%u, quot_delta_scaled=%d\n",
+ is_aging_measurement, sel_min, sel_max, quot_min,
+ quot_max, quot_delta, quot_min_scaled, quot_max_scaled,
+ quot_delta_scaled);
+ }
+
+ filtered_count
+ = aging_measurement_count - CPR3_AGING_MEASUREMENT_FILTER * 2;
+ if (filtered_count > 0) {
+ sort(quot_delta_results, aging_measurement_count,
+ sizeof(*quot_delta_results), cmp_int, NULL);
+
+ quot_delta_scaled_sum = 0;
+ for (i = 0; i < filtered_count; i++)
+ quot_delta_scaled_sum
+ += quot_delta_results[i
+ + CPR3_AGING_MEASUREMENT_FILTER];
+
+ aging_sensor->measured_quot_diff
+ = quot_delta_scaled_sum / filtered_count;
+ cpr3_info(ctrl, "average quotient delta=%d (count=%d)\n",
+ aging_sensor->measured_quot_diff,
+ filtered_count);
+ } else {
+ cpr3_err(ctrl, "%d aging measurements completed after %d iterations\n",
+ aging_measurement_count,
+ CPR3_AGING_MEASUREMENT_ITERATIONS);
+ rc = -EBUSY;
+ }
+
+cleanup:
+ kfree(quot_delta_results);
+
+ if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
+ rc2 = cpr3_ctrl_clear_cpr4_config(ctrl);
+ if (rc2) {
+ cpr3_err(ctrl, "failed to clear CPR4 configuration,rc=%d\n",
+ rc2);
+ rc = rc2;
+ }
+ }
+
+ cpr3_ctrl_loop_disable(ctrl);
+
+ cpr3_write(ctrl, CPR3_REG_IRQ_EN, irq_restore);
+
+ cpr3_write(ctrl, CPR3_REG_RO_MASK(0), ro_mask_restore);
+
+ cpr3_write(ctrl, CPR3_REG_GCNT(0), gcnt0_restore);
+ cpr3_write(ctrl, CPR3_REG_GCNT(1), gcnt1_restore);
+
+ if (ctrl->supports_hw_closed_loop
+ && ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
+ cpr3_write(ctrl, CPR3_REG_CPR_TIMER_MID_CONT, cont_dly_restore);
+ cpr3_write(ctrl, CPR3_REG_CPR_TIMER_UP_DN_CONT,
+ up_down_dly_restore);
+ } else {
+ cpr3_write(ctrl, CPR3_REG_CPR_TIMER_AUTO_CONT,
+ cont_dly_restore);
+ }
+
+ for (i = 0; i <= ctrl->sensor_count / 32; i++) {
+ cpr3_write(ctrl, CPR3_REG_SENSOR_MASK_WRITE_BANK(i), 0);
+ cpr3_write(ctrl, CPR3_REG_SENSOR_BYPASS_WRITE_BANK(i), 0);
+ }
+
+ cpr3_masked_write(ctrl, CPR3_REG_CPR_CTL,
+ CPR3_CPR_CTL_COUNT_MODE_MASK | CPR3_CPR_CTL_COUNT_REPEAT_MASK,
+ (ctrl->count_mode << CPR3_CPR_CTL_COUNT_MODE_SHIFT)
+ | (ctrl->count_repeat << CPR3_CPR_CTL_COUNT_REPEAT_SHIFT));
+
+ cpr3_write(ctrl, CPR3_REG_SENSOR_OWNER(aging_sensor->sensor_id),
+ ctrl->sensor_owner[aging_sensor->sensor_id]);
+
+ cpr3_write(ctrl, CPR3_REG_IRQ_CLEAR,
+ CPR3_IRQ_UP | CPR3_IRQ_DOWN | CPR3_IRQ_MID);
+
+ if (ctrl->supports_hw_closed_loop) {
+ if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
+ cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
+ CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_EN_MASK,
+ ctrl->use_hw_closed_loop
+ ? CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_ENABLE
+ : CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_DISABLE);
+ } else if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
+ cpr3_write(ctrl, CPR3_REG_HW_CLOSED_LOOP,
+ ctrl->use_hw_closed_loop
+ ? CPR3_HW_CLOSED_LOOP_ENABLE
+ : CPR3_HW_CLOSED_LOOP_DISABLE);
+ }
+ }
+
+ return rc;
+}
+
+/**
+ * cpr3_regulator_readjust_volt_and_quot() - readjust the target quotients as
+ * well as the floor, ceiling, and open-loop voltages for the
+ * regulator by removing the old adjustment and adding the new one
+ * @vreg: Pointer to the CPR3 regulator
+ * @old_adjust_volt: Old aging adjustment voltage in microvolts
+ * @new_adjust_volt: New aging adjustment voltage in microvolts
+ *
+ * Also reset the cached closed loop voltage (last_volt) to equal the open-loop
+ * voltage for each corner.
+ *
+ * Return: None
+ */
+static void cpr3_regulator_readjust_volt_and_quot(struct cpr3_regulator *vreg,
+ int old_adjust_volt, int new_adjust_volt)
+{
+ unsigned long long temp;
+ int i, j, old_volt, new_volt, rounded_volt;
+
+ if (!vreg->aging_allowed)
+ return;
+
+ for (i = 0; i < vreg->corner_count; i++) {
+ temp = (unsigned long long)old_adjust_volt
+ * (unsigned long long)vreg->corner[i].aging_derate;
+ do_div(temp, 1000);
+ old_volt = temp;
+
+ temp = (unsigned long long)new_adjust_volt
+ * (unsigned long long)vreg->corner[i].aging_derate;
+ do_div(temp, 1000);
+ new_volt = temp;
+
+ old_volt = min(vreg->aging_max_adjust_volt, old_volt);
+ new_volt = min(vreg->aging_max_adjust_volt, new_volt);
+
+ for (j = 0; j < CPR3_RO_COUNT; j++) {
+ if (vreg->corner[i].target_quot[j] != 0) {
+ vreg->corner[i].target_quot[j]
+ += cpr3_quot_adjustment(
+ vreg->corner[i].ro_scale[j],
+ new_volt)
+ - cpr3_quot_adjustment(
+ vreg->corner[i].ro_scale[j],
+ old_volt);
+ }
+ }
+
+ rounded_volt = CPR3_ROUND(new_volt,
+ vreg->thread->ctrl->step_volt);
+
+ if (!vreg->aging_allow_open_loop_adj)
+ rounded_volt = 0;
+
+ vreg->corner[i].ceiling_volt
+ = vreg->corner[i].unaged_ceiling_volt + rounded_volt;
+ vreg->corner[i].ceiling_volt = min(vreg->corner[i].ceiling_volt,
+ vreg->corner[i].abs_ceiling_volt);
+ vreg->corner[i].floor_volt
+ = vreg->corner[i].unaged_floor_volt + rounded_volt;
+ vreg->corner[i].floor_volt = min(vreg->corner[i].floor_volt,
+ vreg->corner[i].ceiling_volt);
+ vreg->corner[i].open_loop_volt
+ = vreg->corner[i].unaged_open_loop_volt + rounded_volt;
+ vreg->corner[i].open_loop_volt
+ = min(vreg->corner[i].open_loop_volt,
+ vreg->corner[i].ceiling_volt);
+
+ vreg->corner[i].last_volt = vreg->corner[i].open_loop_volt;
+
+ cpr3_debug(vreg, "corner %d: applying %d uV closed-loop and %d uV open-loop voltage margin adjustment\n",
+ i, new_volt, rounded_volt);
+ }
+}
+
+/**
+ * cpr3_regulator_set_aging_ref_adjustment() - adjust target quotients for the
+ * regulators managed by this CPR controller to account for aging
+ * @ctrl: Pointer to the CPR3 controller
+ * @ref_adjust_volt: New aging reference adjustment voltage in microvolts to
+ * apply to all regulators managed by this CPR controller
+ *
+ * The existing aging adjustment as defined by ctrl->aging_ref_adjust_volt is
+ * first removed and then the adjustment is applied. Lastly, the value of
+ * ctrl->aging_ref_adjust_volt is updated to ref_adjust_volt.
+ */
+static void cpr3_regulator_set_aging_ref_adjustment(
+ struct cpr3_controller *ctrl, int ref_adjust_volt)
+{
+ struct cpr3_regulator *vreg;
+ int i, j;
+
+ for (i = 0; i < ctrl->thread_count; i++) {
+ for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
+ vreg = &ctrl->thread[i].vreg[j];
+ cpr3_regulator_readjust_volt_and_quot(vreg,
+ ctrl->aging_ref_adjust_volt, ref_adjust_volt);
+ }
+ }
+
+ ctrl->aging_ref_adjust_volt = ref_adjust_volt;
+}
+
+/**
+ * cpr3_regulator_aging_adjust() - adjust the target quotients for regulators
+ * based on the output of CPR aging sensors
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_aging_adjust(struct cpr3_controller *ctrl)
+{
+ struct cpr3_regulator *vreg;
+ struct cpr3_corner restore_aging_corner;
+ struct cpr3_corner *corner;
+ int *restore_current_corner;
+ bool *restore_vreg_enabled;
+ int i, j, id, rc, rc2, vreg_count, aging_volt, max_aging_volt = 0;
+ u32 reg;
+
+ if (!ctrl->aging_required || !ctrl->cpr_enabled
+ || ctrl->aggr_corner.ceiling_volt == 0
+ || ctrl->aggr_corner.ceiling_volt > ctrl->aging_ref_volt)
+ return 0;
+
+ for (i = 0, vreg_count = 0; i < ctrl->thread_count; i++) {
+ for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
+ vreg = &ctrl->thread[i].vreg[j];
+ vreg_count++;
+
+ if (vreg->aging_allowed && vreg->vreg_enabled
+ && vreg->current_corner > vreg->aging_corner)
+ return 0;
+ }
+ }
+
+ /* Verify that none of the aging sensors are currently masked. */
+ for (i = 0; i < ctrl->aging_sensor_count; i++) {
+ id = ctrl->aging_sensor[i].sensor_id;
+ reg = cpr3_read(ctrl, CPR3_REG_SENSOR_MASK_READ(id));
+ if (reg & BIT(id % 32))
+ return 0;
+ }
+
+ /*
+ * Verify that the aging possible register (if specified) has an
+ * acceptable value.
+ */
+ if (ctrl->aging_possible_reg) {
+ reg = readl_relaxed(ctrl->aging_possible_reg);
+ reg &= ctrl->aging_possible_mask;
+ if (reg != ctrl->aging_possible_val)
+ return 0;
+ }
+
+ restore_current_corner = kcalloc(vreg_count,
+ sizeof(*restore_current_corner), GFP_KERNEL);
+ restore_vreg_enabled = kcalloc(vreg_count,
+ sizeof(*restore_vreg_enabled), GFP_KERNEL);
+ if (!restore_current_corner || !restore_vreg_enabled) {
+ kfree(restore_current_corner);
+ kfree(restore_vreg_enabled);
+ return -ENOMEM;
+ }
+
+ /* Force all regulators to the aging corner */
+ for (i = 0, vreg_count = 0; i < ctrl->thread_count; i++) {
+ for (j = 0; j < ctrl->thread[i].vreg_count; j++, vreg_count++) {
+ vreg = &ctrl->thread[i].vreg[j];
+
+ restore_current_corner[vreg_count]
+ = vreg->current_corner;
+ restore_vreg_enabled[vreg_count]
+ = vreg->vreg_enabled;
+
+ vreg->current_corner = vreg->aging_corner;
+ vreg->vreg_enabled = true;
+ }
+ }
+
+ /* Force one of the regulators to require the aging reference voltage */
+ vreg = &ctrl->thread[0].vreg[0];
+ corner = &vreg->corner[vreg->current_corner];
+ restore_aging_corner = *corner;
+ corner->ceiling_volt = ctrl->aging_ref_volt;
+ corner->floor_volt = ctrl->aging_ref_volt;
+ corner->open_loop_volt = ctrl->aging_ref_volt;
+ corner->last_volt = ctrl->aging_ref_volt;
+
+ /* Skip last_volt caching */
+ ctrl->last_corner_was_closed_loop = false;
+
+ /* Set the vdd supply voltage to the aging reference voltage */
+ rc = _cpr3_regulator_update_ctrl_state(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "unable to force vdd-supply to the aging reference voltage=%d uV, rc=%d\n",
+ ctrl->aging_ref_volt, rc);
+ goto cleanup;
+ }
+
+ if (ctrl->aging_vdd_mode) {
+ rc = regulator_set_mode(ctrl->vdd_regulator,
+ ctrl->aging_vdd_mode);
+ if (rc) {
+ cpr3_err(ctrl, "unable to configure vdd-supply for mode=%u, rc=%d\n",
+ ctrl->aging_vdd_mode, rc);
+ goto cleanup;
+ }
+ }
+
+ /* Perform aging measurement on all aging sensors */
+ for (i = 0; i < ctrl->aging_sensor_count; i++) {
+ for (j = 0; j < CPR3_AGING_RETRY_COUNT; j++) {
+ rc = cpr3_regulator_measure_aging(ctrl,
+ &ctrl->aging_sensor[i]);
+ if (!rc)
+ break;
+ }
+
+ if (!rc) {
+ aging_volt =
+ cpr3_voltage_adjustment(
+ ctrl->aging_sensor[i].ro_scale,
+ ctrl->aging_sensor[i].measured_quot_diff
+ - ctrl->aging_sensor[i].init_quot_diff);
+ max_aging_volt = max(max_aging_volt, aging_volt);
+ } else {
+ cpr3_err(ctrl, "CPR aging measurement failed after %d tries, rc=%d\n",
+ j, rc);
+ ctrl->aging_failed = true;
+ ctrl->aging_required = false;
+ goto cleanup;
+ }
+ }
+
+cleanup:
+ vreg = &ctrl->thread[0].vreg[0];
+ vreg->corner[vreg->current_corner] = restore_aging_corner;
+
+ for (i = 0, vreg_count = 0; i < ctrl->thread_count; i++) {
+ for (j = 0; j < ctrl->thread[i].vreg_count; j++, vreg_count++) {
+ vreg = &ctrl->thread[i].vreg[j];
+ vreg->current_corner
+ = restore_current_corner[vreg_count];
+ vreg->vreg_enabled = restore_vreg_enabled[vreg_count];
+ }
+ }
+
+ kfree(restore_current_corner);
+ kfree(restore_vreg_enabled);
+
+ /* Adjust the CPR target quotients according to the aging measurement */
+ if (!rc) {
+ cpr3_regulator_set_aging_ref_adjustment(ctrl, max_aging_volt);
+
+ cpr3_info(ctrl, "aging measurement successful; aging reference adjustment voltage=%d uV\n",
+ ctrl->aging_ref_adjust_volt);
+ ctrl->aging_succeeded = true;
+ ctrl->aging_required = false;
+ }
+
+ if (ctrl->aging_complete_vdd_mode) {
+ rc = regulator_set_mode(ctrl->vdd_regulator,
+ ctrl->aging_complete_vdd_mode);
+ if (rc)
+ cpr3_err(ctrl, "unable to configure vdd-supply for mode=%u, rc=%d\n",
+ ctrl->aging_complete_vdd_mode, rc);
+ }
+
+ /* Skip last_volt caching */
+ ctrl->last_corner_was_closed_loop = false;
+
+ /*
+ * Restore vdd-supply to the voltage before the aging measurement and
+ * restore the CPR3 controller hardware state.
+ */
+ rc2 = _cpr3_regulator_update_ctrl_state(ctrl);
+
+ /* Stop last_volt caching on for the next request */
+ ctrl->last_corner_was_closed_loop = false;
+
+ return rc ? rc : rc2;
+}
+
+/**
+ * cpr3_regulator_update_ctrl_state() - update the state of the CPR controller
+ * to reflect the corners used by all CPR3 regulators as well as
+ * the CPR operating mode and perform aging adjustments if needed
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Note, CPR3 controller lock must be held by the caller.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_update_ctrl_state(struct cpr3_controller *ctrl)
+{
+ int rc;
+
+ rc = _cpr3_regulator_update_ctrl_state(ctrl);
+ if (rc)
+ return rc;
+
+ return cpr3_regulator_aging_adjust(ctrl);
+}
+
+/**
+ * cpr3_regulator_set_voltage() - set the voltage corner for the CPR3 regulator
+ * associated with the regulator device
+ * @rdev: Regulator device pointer for the cpr3-regulator
+ * @corner: New voltage corner to set (offset by CPR3_CORNER_OFFSET)
+ * @corner_max: Maximum voltage corner allowed (offset by
+ * CPR3_CORNER_OFFSET)
+ * @selector: Pointer which is filled with the selector value for the
+ * corner
+ *
+ * This function is passed as a callback function into the regulator ops that
+ * are registered for each cpr3-regulator device. The VDD voltage will not be
+ * physically configured until both this function and cpr3_regulator_enable()
+ * are called.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_set_voltage(struct regulator_dev *rdev,
+ int corner, int corner_max, unsigned *selector)
+{
+ struct cpr3_regulator *vreg = rdev_get_drvdata(rdev);
+ struct cpr3_controller *ctrl = vreg->thread->ctrl;
+ int rc = 0;
+ int last_corner;
+
+ corner -= CPR3_CORNER_OFFSET;
+ corner_max -= CPR3_CORNER_OFFSET;
+ *selector = corner;
+
+ mutex_lock(&ctrl->lock);
+
+ if (!vreg->vreg_enabled) {
+ vreg->current_corner = corner;
+ cpr3_debug(vreg, "stored corner=%d\n", corner);
+ goto done;
+ } else if (vreg->current_corner == corner) {
+ goto done;
+ }
+
+ last_corner = vreg->current_corner;
+ vreg->current_corner = corner;
+
+ if (vreg->cpr4_regulator_data != NULL)
+ if (vreg->cpr4_regulator_data->mem_acc_funcs != NULL)
+ vreg->cpr4_regulator_data->mem_acc_funcs->set_mem_acc(rdev);
+
+ rc = cpr3_regulator_update_ctrl_state(ctrl);
+ if (rc) {
+ cpr3_err(vreg, "could not update CPR state, rc=%d\n", rc);
+ vreg->current_corner = last_corner;
+ }
+
+ if (vreg->cpr4_regulator_data != NULL)
+ if (vreg->cpr4_regulator_data->mem_acc_funcs != NULL)
+ vreg->cpr4_regulator_data->mem_acc_funcs->clear_mem_acc(rdev);
+
+ cpr3_debug(vreg, "set corner=%d\n", corner);
+done:
+ mutex_unlock(&ctrl->lock);
+
+ return rc;
+}
+
+/**
+ * cpr3_handle_temp_open_loop_adjustment() - voltage based cold temperature
+ *
+ * @rdev: Regulator device pointer for the cpr3-regulator
+ * @is_cold: Flag to denote enter/exit cold condition
+ *
+ * This function is adjusts voltage margin based on cold condition
+ *
+ * Return: 0 = success
+ */
+
+int cpr3_handle_temp_open_loop_adjustment(struct cpr3_controller *ctrl,
+ bool is_cold)
+{
+ int i ,j, k, rc;
+ struct cpr3_regulator *vreg;
+
+ mutex_lock(&ctrl->lock);
+ for (i = 0; i < ctrl->thread_count; i++) {
+ for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
+ vreg = &ctrl->thread[i].vreg[j];
+ for (k = 0; k < vreg->corner_count; k++) {
+ vreg->corner[k].open_loop_volt = is_cold ?
+ vreg->corner[k].cold_temp_open_loop_volt :
+ vreg->corner[k].normal_temp_open_loop_volt;
+ }
+ }
+ }
+ rc = cpr3_regulator_update_ctrl_state(ctrl);
+ mutex_unlock(&ctrl->lock);
+
+ return rc;
+}
+
+/**
+ * cpr3_regulator_get_voltage() - get the voltage corner for the CPR3 regulator
+ * associated with the regulator device
+ * @rdev: Regulator device pointer for the cpr3-regulator
+ *
+ * This function is passed as a callback function into the regulator ops that
+ * are registered for each cpr3-regulator device.
+ *
+ * Return: voltage corner value offset by CPR3_CORNER_OFFSET
+ */
+static int cpr3_regulator_get_voltage(struct regulator_dev *rdev)
+{
+ struct cpr3_regulator *vreg = rdev_get_drvdata(rdev);
+
+ if (vreg->current_corner == CPR3_REGULATOR_CORNER_INVALID)
+ return CPR3_CORNER_OFFSET;
+ else
+ return vreg->current_corner + CPR3_CORNER_OFFSET;
+}
+
+/**
+ * cpr3_regulator_list_voltage() - return the voltage corner mapped to the
+ * specified selector
+ * @rdev: Regulator device pointer for the cpr3-regulator
+ * @selector: Regulator selector
+ *
+ * This function is passed as a callback function into the regulator ops that
+ * are registered for each cpr3-regulator device.
+ *
+ * Return: voltage corner value offset by CPR3_CORNER_OFFSET
+ */
+static int cpr3_regulator_list_voltage(struct regulator_dev *rdev,
+ unsigned selector)
+{
+ struct cpr3_regulator *vreg = rdev_get_drvdata(rdev);
+
+ if (selector < vreg->corner_count)
+ return selector + CPR3_CORNER_OFFSET;
+ else
+ return 0;
+}
+
+/**
+ * cpr3_regulator_is_enabled() - return the enable state of the CPR3 regulator
+ * @rdev: Regulator device pointer for the cpr3-regulator
+ *
+ * This function is passed as a callback function into the regulator ops that
+ * are registered for each cpr3-regulator device.
+ *
+ * Return: true if regulator is enabled, false if regulator is disabled
+ */
+static int cpr3_regulator_is_enabled(struct regulator_dev *rdev)
+{
+ struct cpr3_regulator *vreg = rdev_get_drvdata(rdev);
+
+ return vreg->vreg_enabled;
+}
+
+/**
+ * cpr3_regulator_enable() - enable the CPR3 regulator
+ * @rdev: Regulator device pointer for the cpr3-regulator
+ *
+ * This function is passed as a callback function into the regulator ops that
+ * are registered for each cpr3-regulator device.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_enable(struct regulator_dev *rdev)
+{
+ struct cpr3_regulator *vreg = rdev_get_drvdata(rdev);
+ struct cpr3_controller *ctrl = vreg->thread->ctrl;
+ int rc = 0;
+
+ if (vreg->vreg_enabled == true)
+ return 0;
+
+ mutex_lock(&ctrl->lock);
+
+ if (ctrl->system_regulator) {
+ rc = regulator_enable(ctrl->system_regulator);
+ if (rc) {
+ cpr3_err(ctrl, "regulator_enable(system) failed, rc=%d\n",
+ rc);
+ goto done;
+ }
+ }
+
+ rc = regulator_enable(ctrl->vdd_regulator);
+ if (rc) {
+ cpr3_err(vreg, "regulator_enable(vdd) failed, rc=%d\n", rc);
+ goto done;
+ }
+
+ vreg->vreg_enabled = true;
+ rc = cpr3_regulator_update_ctrl_state(ctrl);
+ if (rc) {
+ cpr3_err(vreg, "could not update CPR state, rc=%d\n", rc);
+ regulator_disable(ctrl->vdd_regulator);
+ vreg->vreg_enabled = false;
+ goto done;
+ }
+
+ cpr3_debug(vreg, "Enabled\n");
+done:
+ mutex_unlock(&ctrl->lock);
+
+ return rc;
+}
+
+/**
+ * cpr3_regulator_disable() - disable the CPR3 regulator
+ * @rdev: Regulator device pointer for the cpr3-regulator
+ *
+ * This function is passed as a callback function into the regulator ops that
+ * are registered for each cpr3-regulator device.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_disable(struct regulator_dev *rdev)
+{
+ struct cpr3_regulator *vreg = rdev_get_drvdata(rdev);
+ struct cpr3_controller *ctrl = vreg->thread->ctrl;
+ int rc, rc2;
+
+ if (vreg->vreg_enabled == false)
+ return 0;
+
+ mutex_lock(&ctrl->lock);
+ rc = regulator_disable(ctrl->vdd_regulator);
+ if (rc) {
+ cpr3_err(vreg, "regulator_disable(vdd) failed, rc=%d\n", rc);
+ goto done;
+ }
+
+ vreg->vreg_enabled = false;
+ rc = cpr3_regulator_update_ctrl_state(ctrl);
+ if (rc) {
+ cpr3_err(vreg, "could not update CPR state, rc=%d\n", rc);
+ rc2 = regulator_enable(ctrl->vdd_regulator);
+ vreg->vreg_enabled = true;
+ goto done;
+ }
+
+ if (ctrl->system_regulator) {
+ rc = regulator_disable(ctrl->system_regulator);
+ if (rc) {
+ cpr3_err(ctrl, "regulator_disable(system) failed, rc=%d\n",
+ rc);
+ goto done;
+ }
+ }
+
+ cpr3_debug(vreg, "Disabled\n");
+done:
+ mutex_unlock(&ctrl->lock);
+
+ return rc;
+}
+
+static struct regulator_ops cpr3_regulator_ops = {
+ .enable = cpr3_regulator_enable,
+ .disable = cpr3_regulator_disable,
+ .is_enabled = cpr3_regulator_is_enabled,
+ .set_voltage = cpr3_regulator_set_voltage,
+ .get_voltage = cpr3_regulator_get_voltage,
+ .list_voltage = cpr3_regulator_list_voltage,
+};
+
+/**
+ * cpr3_print_result() - print CPR measurement results to the kernel log for
+ * debugging purposes
+ * @thread: Pointer to the CPR3 thread
+ *
+ * Return: None
+ */
+static void cpr3_print_result(struct cpr3_thread *thread)
+{
+ struct cpr3_controller *ctrl = thread->ctrl;
+ u32 result[3], busy, step_dn, step_up, error_steps, error, negative;
+ u32 quot_min, quot_max, ro_min, ro_max, step_quot_min, step_quot_max;
+ u32 sensor_min, sensor_max;
+ char *sign;
+
+ result[0] = cpr3_read(ctrl, CPR3_REG_RESULT0(thread->thread_id));
+ result[1] = cpr3_read(ctrl, CPR3_REG_RESULT1(thread->thread_id));
+ result[2] = cpr3_read(ctrl, CPR3_REG_RESULT2(thread->thread_id));
+
+ busy = !!(result[0] & CPR3_RESULT0_BUSY_MASK);
+ step_dn = !!(result[0] & CPR3_RESULT0_STEP_DN_MASK);
+ step_up = !!(result[0] & CPR3_RESULT0_STEP_UP_MASK);
+ error_steps = (result[0] & CPR3_RESULT0_ERROR_STEPS_MASK)
+ >> CPR3_RESULT0_ERROR_STEPS_SHIFT;
+ error = (result[0] & CPR3_RESULT0_ERROR_MASK)
+ >> CPR3_RESULT0_ERROR_SHIFT;
+ negative = !!(result[0] & CPR3_RESULT0_NEGATIVE_MASK);
+
+ quot_min = (result[1] & CPR3_RESULT1_QUOT_MIN_MASK)
+ >> CPR3_RESULT1_QUOT_MIN_SHIFT;
+ quot_max = (result[1] & CPR3_RESULT1_QUOT_MAX_MASK)
+ >> CPR3_RESULT1_QUOT_MAX_SHIFT;
+ ro_min = (result[1] & CPR3_RESULT1_RO_MIN_MASK)
+ >> CPR3_RESULT1_RO_MIN_SHIFT;
+ ro_max = (result[1] & CPR3_RESULT1_RO_MAX_MASK)
+ >> CPR3_RESULT1_RO_MAX_SHIFT;
+
+ step_quot_min = (result[2] & CPR3_RESULT2_STEP_QUOT_MIN_MASK)
+ >> CPR3_RESULT2_STEP_QUOT_MIN_SHIFT;
+ step_quot_max = (result[2] & CPR3_RESULT2_STEP_QUOT_MAX_MASK)
+ >> CPR3_RESULT2_STEP_QUOT_MAX_SHIFT;
+ sensor_min = (result[2] & CPR3_RESULT2_SENSOR_MIN_MASK)
+ >> CPR3_RESULT2_SENSOR_MIN_SHIFT;
+ sensor_max = (result[2] & CPR3_RESULT2_SENSOR_MAX_MASK)
+ >> CPR3_RESULT2_SENSOR_MAX_SHIFT;
+
+ sign = negative ? "-" : "";
+ cpr3_debug(ctrl, "thread %u: busy=%u, step_dn=%u, step_up=%u, error_steps=%s%u, error=%s%u\n",
+ thread->thread_id, busy, step_dn, step_up, sign, error_steps,
+ sign, error);
+ cpr3_debug(ctrl, "thread %u: quot_min=%u, quot_max=%u, ro_min=%u, ro_max=%u\n",
+ thread->thread_id, quot_min, quot_max, ro_min, ro_max);
+ cpr3_debug(ctrl, "thread %u: step_quot_min=%u, step_quot_max=%u, sensor_min=%u, sensor_max=%u\n",
+ thread->thread_id, step_quot_min, step_quot_max, sensor_min,
+ sensor_max);
+}
+
+/**
+ * cpr3_thread_busy() - returns if the specified CPR3 thread is busy taking
+ * a measurement
+ * @thread: Pointer to the CPR3 thread
+ *
+ * Return: CPR3 busy status
+ */
+static bool cpr3_thread_busy(struct cpr3_thread *thread)
+{
+ u32 result;
+
+ result = cpr3_read(thread->ctrl, CPR3_REG_RESULT0(thread->thread_id));
+
+ return !!(result & CPR3_RESULT0_BUSY_MASK);
+}
+
+/**
+ * cpr3_irq_handler() - CPR interrupt handler callback function used for
+ * software closed-loop operation
+ * @irq: CPR interrupt number
+ * @data: Private data corresponding to the CPR3 controller
+ * pointer
+ *
+ * This function increases or decreases the vdd supply voltage based upon the
+ * CPR controller recommendation.
+ *
+ * Return: IRQ_HANDLED
+ */
+static irqreturn_t cpr3_irq_handler(int irq, void *data)
+{
+ struct cpr3_controller *ctrl = data;
+ struct cpr3_corner *aggr = &ctrl->aggr_corner;
+ u32 cont = CPR3_CONT_CMD_NACK;
+ u32 reg_last_measurement = 0;
+ struct cpr3_regulator *vreg;
+ struct cpr3_corner *corner;
+ unsigned long flags;
+ int i, j, new_volt, last_volt, dynamic_floor_volt, rc;
+ u32 irq_en, status, cpr_status, ctl;
+ bool up, down;
+
+ mutex_lock(&ctrl->lock);
+
+ if (!ctrl->cpr_enabled) {
+ cpr3_debug(ctrl, "CPR interrupt received but CPR is disabled\n");
+ mutex_unlock(&ctrl->lock);
+ return IRQ_HANDLED;
+ } else if (ctrl->use_hw_closed_loop) {
+ cpr3_debug(ctrl, "CPR interrupt received but CPR is using HW closed-loop\n");
+ goto done;
+ }
+
+ /*
+ * CPR IRQ status checking and CPR controller disabling must happen
+ * atomically and without invening delay in order to avoid an interrupt
+ * storm caused by the handler racing with the CPR controller.
+ */
+ local_irq_save(flags);
+ preempt_disable();
+
+ status = cpr3_read(ctrl, CPR3_REG_IRQ_STATUS);
+ up = status & CPR3_IRQ_UP;
+ down = status & CPR3_IRQ_DOWN;
+
+ if (!up && !down) {
+ /*
+ * Toggle the CPR controller off and then back on since the
+ * hardware and software states are out of sync. This condition
+ * occurs after an aging measurement completes as the CPR IRQ
+ * physically triggers during the aging measurement but the
+ * handler is stuck waiting on the mutex lock.
+ */
+ cpr3_ctrl_loop_disable(ctrl);
+
+ local_irq_restore(flags);
+ preempt_enable();
+
+ /* Wait for the loop disable write to complete */
+ mb();
+
+ /* Wait for BUSY=1 and LOOP_EN=0 in CPR controller registers. */
+ for (i = 0; i < CPR3_REGISTER_WRITE_DELAY_US / 10; i++) {
+ cpr_status = cpr3_read(ctrl, CPR3_REG_CPR_STATUS);
+ ctl = cpr3_read(ctrl, CPR3_REG_CPR_CTL);
+ if (cpr_status & CPR3_CPR_STATUS_BUSY_MASK
+ && (ctl & CPR3_CPR_CTL_LOOP_EN_MASK)
+ == CPR3_CPR_CTL_LOOP_DISABLE)
+ break;
+ udelay(10);
+ }
+ if (i == CPR3_REGISTER_WRITE_DELAY_US / 10)
+ cpr3_debug(ctrl, "CPR controller not disabled after %d us\n",
+ CPR3_REGISTER_WRITE_DELAY_US);
+
+ /* Clear interrupt status */
+ cpr3_write(ctrl, CPR3_REG_IRQ_CLEAR,
+ CPR3_IRQ_UP | CPR3_IRQ_DOWN);
+
+ /* Wait for the interrupt clearing write to complete */
+ mb();
+
+ /* Wait for IRQ_STATUS register to be cleared. */
+ for (i = 0; i < CPR3_REGISTER_WRITE_DELAY_US / 10; i++) {
+ status = cpr3_read(ctrl, CPR3_REG_IRQ_STATUS);
+ if (!(status & (CPR3_IRQ_UP | CPR3_IRQ_DOWN)))
+ break;
+ udelay(10);
+ }
+ if (i == CPR3_REGISTER_WRITE_DELAY_US / 10)
+ cpr3_debug(ctrl, "CPR interrupts not cleared after %d us\n",
+ CPR3_REGISTER_WRITE_DELAY_US);
+
+ cpr3_ctrl_loop_enable(ctrl);
+
+ cpr3_debug(ctrl, "CPR interrupt received but no up or down status bit is set\n");
+
+ mutex_unlock(&ctrl->lock);
+ return IRQ_HANDLED;
+ } else if (up && down) {
+ cpr3_debug(ctrl, "both up and down status bits set\n");
+ /* The up flag takes precedence over the down flag. */
+ down = false;
+ }
+
+ if (ctrl->supports_hw_closed_loop)
+ reg_last_measurement
+ = cpr3_read(ctrl, CPR3_REG_LAST_MEASUREMENT);
+ dynamic_floor_volt = cpr3_regulator_get_dynamic_floor_volt(ctrl,
+ reg_last_measurement);
+
+ local_irq_restore(flags);
+ preempt_enable();
+
+ irq_en = aggr->irq_en;
+ last_volt = aggr->last_volt;
+
+ for (i = 0; i < ctrl->thread_count; i++) {
+ if (cpr3_thread_busy(&ctrl->thread[i])) {
+ cpr3_debug(ctrl, "CPR thread %u busy when it should be waiting for SW cont\n",
+ ctrl->thread[i].thread_id);
+ goto done;
+ }
+ }
+
+ new_volt = up ? last_volt + ctrl->step_volt
+ : last_volt - ctrl->step_volt;
+
+ /* Re-enable UP/DOWN interrupt when its opposite is received. */
+ irq_en |= up ? CPR3_IRQ_DOWN : CPR3_IRQ_UP;
+
+ if (new_volt > aggr->ceiling_volt) {
+ new_volt = aggr->ceiling_volt;
+ irq_en &= ~CPR3_IRQ_UP;
+ cpr3_debug(ctrl, "limiting to ceiling=%d uV\n",
+ aggr->ceiling_volt);
+ } else if (new_volt < aggr->floor_volt) {
+ new_volt = aggr->floor_volt;
+ irq_en &= ~CPR3_IRQ_DOWN;
+ cpr3_debug(ctrl, "limiting to floor=%d uV\n", aggr->floor_volt);
+ }
+
+ if (down && new_volt < dynamic_floor_volt) {
+ /*
+ * The vdd-supply voltage should not be decreased below the
+ * dynamic floor voltage. However, it is not necessary (and
+ * counter productive) to force the voltage up to this level
+ * if it happened to be below it since the closed-loop voltage
+ * must have gotten there in a safe manner while the power
+ * domains for the CPR3 regulator imposing the dynamic floor
+ * were not bypassed.
+ */
+ new_volt = last_volt;
+ irq_en &= ~CPR3_IRQ_DOWN;
+ cpr3_debug(ctrl, "limiting to dynamic floor=%d uV\n",
+ dynamic_floor_volt);
+ }
+
+ for (i = 0; i < ctrl->thread_count; i++)
+ cpr3_print_result(&ctrl->thread[i]);
+
+ cpr3_debug(ctrl, "%s: new_volt=%d uV, last_volt=%d uV\n",
+ up ? "UP" : "DN", new_volt, last_volt);
+
+ if (ctrl->proc_clock_throttle && last_volt == aggr->ceiling_volt
+ && new_volt < last_volt)
+ cpr3_write(ctrl, CPR3_REG_PD_THROTTLE,
+ ctrl->proc_clock_throttle);
+
+ if (new_volt != last_volt) {
+ rc = cpr3_regulator_scale_vdd_voltage(ctrl, new_volt,
+ last_volt,
+ aggr);
+ if (rc) {
+ cpr3_err(ctrl, "scale_vdd() failed to set vdd=%d uV, rc=%d\n",
+ new_volt, rc);
+ goto done;
+ }
+ cont = CPR3_CONT_CMD_ACK;
+
+ /*
+ * Update the closed-loop voltage for all regulators managed
+ * by this CPR controller.
+ */
+ for (i = 0; i < ctrl->thread_count; i++) {
+ for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
+ vreg = &ctrl->thread[i].vreg[j];
+ cpr3_update_vreg_closed_loop_volt(vreg,
+ new_volt, reg_last_measurement);
+ }
+ }
+ }
+
+ if (ctrl->proc_clock_throttle && new_volt == aggr->ceiling_volt)
+ cpr3_write(ctrl, CPR3_REG_PD_THROTTLE,
+ CPR3_PD_THROTTLE_DISABLE);
+
+ corner = &ctrl->thread[0].vreg[0].corner[
+ ctrl->thread[0].vreg[0].current_corner];
+
+ if (irq_en != aggr->irq_en) {
+ aggr->irq_en = irq_en;
+ cpr3_write(ctrl, CPR3_REG_IRQ_EN, irq_en);
+ }
+
+ aggr->last_volt = new_volt;
+
+done:
+ /* Clear interrupt status */
+ cpr3_write(ctrl, CPR3_REG_IRQ_CLEAR, CPR3_IRQ_UP | CPR3_IRQ_DOWN);
+
+ /* ACK or NACK the CPR controller */
+ cpr3_write(ctrl, CPR3_REG_CONT_CMD, cont);
+
+ mutex_unlock(&ctrl->lock);
+ return IRQ_HANDLED;
+}
+
+/**
+ * cpr3_ceiling_irq_handler() - CPR ceiling reached interrupt handler callback
+ * function used for hardware closed-loop operation
+ * @irq: CPR ceiling interrupt number
+ * @data: Private data corresponding to the CPR3 controller
+ * pointer
+ *
+ * This function disables processor clock throttling and closed-loop operation
+ * when the ceiling voltage is reached.
+ *
+ * Return: IRQ_HANDLED
+ */
+static irqreturn_t cpr3_ceiling_irq_handler(int irq, void *data)
+{
+ struct cpr3_controller *ctrl = data;
+ int volt;
+
+ mutex_lock(&ctrl->lock);
+
+ if (!ctrl->cpr_enabled) {
+ cpr3_debug(ctrl, "CPR ceiling interrupt received but CPR is disabled\n");
+ goto done;
+ } else if (!ctrl->use_hw_closed_loop) {
+ cpr3_debug(ctrl, "CPR ceiling interrupt received but CPR is using SW closed-loop\n");
+ goto done;
+ }
+
+ volt = regulator_get_voltage(ctrl->vdd_regulator);
+ if (volt < 0) {
+ cpr3_err(ctrl, "could not get vdd voltage, rc=%d\n", volt);
+ goto done;
+ } else if (volt != ctrl->aggr_corner.ceiling_volt) {
+ cpr3_debug(ctrl, "CPR ceiling interrupt received but vdd voltage: %d uV != ceiling voltage: %d uV\n",
+ volt, ctrl->aggr_corner.ceiling_volt);
+ goto done;
+ }
+
+ if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
+ /*
+ * Since the ceiling voltage has been reached, disable processor
+ * clock throttling as well as CPR closed-loop operation.
+ */
+ cpr3_write(ctrl, CPR3_REG_PD_THROTTLE,
+ CPR3_PD_THROTTLE_DISABLE);
+ cpr3_ctrl_loop_disable(ctrl);
+ cpr3_debug(ctrl, "CPR closed-loop and throttling disabled\n");
+ }
+
+done:
+ mutex_unlock(&ctrl->lock);
+ return IRQ_HANDLED;
+}
+
+/**
+ * cpr3_regulator_vreg_register() - register a regulator device for a CPR3
+ * regulator
+ * @vreg: Pointer to the CPR3 regulator
+ *
+ * This function initializes all regulator framework related structures and then
+ * calls regulator_register() for the CPR3 regulator.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_vreg_register(struct cpr3_regulator *vreg)
+{
+ struct regulator_config config = {};
+ struct regulator_desc *rdesc;
+ struct regulator_init_data *init_data;
+ int rc;
+
+ init_data = of_get_regulator_init_data(vreg->thread->ctrl->dev,
+ vreg->of_node, &vreg->rdesc);
+ if (!init_data) {
+ cpr3_err(vreg, "regulator init data is missing\n");
+ return -EINVAL;
+ }
+
+ init_data->constraints.input_uV = init_data->constraints.max_uV;
+ rdesc = &vreg->rdesc;
+ init_data->constraints.valid_ops_mask |=
+ REGULATOR_CHANGE_VOLTAGE | REGULATOR_CHANGE_STATUS;
+ rdesc->ops = &cpr3_regulator_ops;
+
+ rdesc->n_voltages = vreg->corner_count;
+ rdesc->name = init_data->constraints.name;
+ rdesc->owner = THIS_MODULE;
+ rdesc->type = REGULATOR_VOLTAGE;
+
+ config.dev = vreg->thread->ctrl->dev;
+ config.driver_data = vreg;
+ config.init_data = init_data;
+ config.of_node = vreg->of_node;
+
+ vreg->rdev = regulator_register(vreg->thread->ctrl->dev, rdesc, &config);
+ if (IS_ERR(vreg->rdev)) {
+ rc = PTR_ERR(vreg->rdev);
+ cpr3_err(vreg, "regulator_register failed, rc=%d\n", rc);
+ return rc;
+ }
+
+ return 0;
+}
+
+static int debugfs_int_set(void *data, u64 val)
+{
+ *(int *)data = val;
+ return 0;
+}
+
+static int debugfs_int_get(void *data, u64 *val)
+{
+ *val = *(int *)data;
+ return 0;
+}
+DEFINE_SIMPLE_ATTRIBUTE(fops_int, debugfs_int_get, debugfs_int_set, "%lld\n");
+DEFINE_SIMPLE_ATTRIBUTE(fops_int_ro, debugfs_int_get, NULL, "%lld\n");
+DEFINE_SIMPLE_ATTRIBUTE(fops_int_wo, NULL, debugfs_int_set, "%lld\n");
+
+/**
+ * debugfs_create_int - create a debugfs file that is used to read and write a
+ * signed int value
+ * @name: Pointer to a string containing the name of the file to
+ * create
+ * @mode: The permissions that the file should have
+ * @parent: Pointer to the parent dentry for this file. This should
+ * be a directory dentry if set. If this parameter is
+ * %NULL, then the file will be created in the root of the
+ * debugfs filesystem.
+ * @value: Pointer to the variable that the file should read to and
+ * write from
+ *
+ * This function creates a file in debugfs with the given name that
+ * contains the value of the variable @value. If the @mode variable is so
+ * set, it can be read from, and written to.
+ *
+ * This function will return a pointer to a dentry if it succeeds. This
+ * pointer must be passed to the debugfs_remove() function when the file is
+ * to be removed. If an error occurs, %NULL will be returned.
+ */
+static struct dentry *debugfs_create_int(const char *name, umode_t mode,
+ struct dentry *parent, int *value)
+{
+ /* if there are no write bits set, make read only */
+ if (!(mode & S_IWUGO))
+ return debugfs_create_file(name, mode, parent, value,
+ &fops_int_ro);
+ /* if there are no read bits set, make write only */
+ if (!(mode & S_IRUGO))
+ return debugfs_create_file(name, mode, parent, value,
+ &fops_int_wo);
+
+ return debugfs_create_file(name, mode, parent, value, &fops_int);
+}
+
+static int debugfs_bool_get(void *data, u64 *val)
+{
+ *val = *(bool *)data;
+ return 0;
+}
+DEFINE_SIMPLE_ATTRIBUTE(fops_bool_ro, debugfs_bool_get, NULL, "%lld\n");
+
+/**
+ * struct cpr3_debug_corner_info - data structure used by the
+ * cpr3_debugfs_create_corner_int function
+ * @vreg: Pointer to the CPR3 regulator
+ * @index: Pointer to the corner array index
+ * @member_offset: Offset in bytes from the beginning of struct cpr3_corner
+ * to the beginning of the value to be read from
+ * @corner: Pointer to the CPR3 corner array
+ */
+struct cpr3_debug_corner_info {
+ struct cpr3_regulator *vreg;
+ int *index;
+ size_t member_offset;
+ struct cpr3_corner *corner;
+};
+
+static int cpr3_debug_corner_int_get(void *data, u64 *val)
+{
+ struct cpr3_debug_corner_info *info = data;
+ struct cpr3_controller *ctrl = info->vreg->thread->ctrl;
+ int i;
+
+ mutex_lock(&ctrl->lock);
+
+ i = *info->index;
+ if (i < 0)
+ i = 0;
+
+ *val = *(int *)((char *)&info->vreg->corner[i] + info->member_offset);
+
+ mutex_unlock(&ctrl->lock);
+
+ return 0;
+}
+DEFINE_SIMPLE_ATTRIBUTE(cpr3_debug_corner_int_fops, cpr3_debug_corner_int_get,
+ NULL, "%lld\n");
+
+/**
+ * cpr3_debugfs_create_corner_int - create a debugfs file that is used to read
+ * a signed int value out of a CPR3 regulator's corner array
+ * @vreg: Pointer to the CPR3 regulator
+ * @name: Pointer to a string containing the name of the file to
+ * create
+ * @mode: The permissions that the file should have
+ * @parent: Pointer to the parent dentry for this file. This should
+ * be a directory dentry if set. If this parameter is
+ * %NULL, then the file will be created in the root of the
+ * debugfs filesystem.
+ * @index: Pointer to the corner array index
+ * @member_offset: Offset in bytes from the beginning of struct cpr3_corner
+ * to the beginning of the value to be read from
+ *
+ * This function creates a file in debugfs with the given name that
+ * contains the value of the int type variable vreg->corner[index].member
+ * where member_offset == offsetof(struct cpr3_corner, member).
+ */
+static struct dentry *cpr3_debugfs_create_corner_int(
+ struct cpr3_regulator *vreg, const char *name, umode_t mode,
+ struct dentry *parent, int *index, size_t member_offset)
+{
+ struct cpr3_debug_corner_info *info;
+
+ info = devm_kzalloc(vreg->thread->ctrl->dev, sizeof(*info), GFP_KERNEL);
+ if (!info)
+ return NULL;
+
+ info->vreg = vreg;
+ info->index = index;
+ info->member_offset = member_offset;
+
+ return debugfs_create_file(name, mode, parent, info,
+ &cpr3_debug_corner_int_fops);
+}
+
+static int cpr3_debug_quot_open(struct inode *inode, struct file *file)
+{
+ struct cpr3_debug_corner_info *info = inode->i_private;
+ struct cpr3_thread *thread = info->vreg->thread;
+ int size, i, pos;
+ u32 *quot;
+ char *buf;
+
+ /*
+ * Max size:
+ * - 10 digits + ' ' or '\n' = 11 bytes per number
+ * - terminating '\0'
+ */
+ size = CPR3_RO_COUNT * 11;
+ buf = kzalloc(size + 1, GFP_KERNEL);
+ if (!buf)
+ return -ENOMEM;
+
+ file->private_data = buf;
+
+ mutex_lock(&thread->ctrl->lock);
+
+ quot = info->corner[*info->index].target_quot;
+
+ for (i = 0, pos = 0; i < CPR3_RO_COUNT; i++)
+ pos += scnprintf(buf + pos, size - pos, "%u%c",
+ quot[i], i < CPR3_RO_COUNT - 1 ? ' ' : '\n');
+
+ mutex_unlock(&thread->ctrl->lock);
+
+ return nonseekable_open(inode, file);
+}
+
+static ssize_t cpr3_debug_quot_read(struct file *file, char __user *buf,
+ size_t len, loff_t *ppos)
+{
+ return simple_read_from_buffer(buf, len, ppos, file->private_data,
+ strlen(file->private_data));
+}
+
+static int cpr3_debug_quot_release(struct inode *inode, struct file *file)
+{
+ kfree(file->private_data);
+
+ return 0;
+}
+
+static const struct file_operations cpr3_debug_quot_fops = {
+ .owner = THIS_MODULE,
+ .open = cpr3_debug_quot_open,
+ .release = cpr3_debug_quot_release,
+ .read = cpr3_debug_quot_read,
+};
+
+/**
+ * cpr3_regulator_debugfs_corner_add() - add debugfs files to expose
+ * configuration data for the CPR corner
+ * @vreg: Pointer to the CPR3 regulator
+ * @corner_dir: Pointer to the parent corner dentry for the new files
+ * @index: Pointer to the corner array index
+ *
+ * Return: none
+ */
+static void cpr3_regulator_debugfs_corner_add(struct cpr3_regulator *vreg,
+ struct dentry *corner_dir, int *index)
+{
+ struct cpr3_debug_corner_info *info;
+ struct dentry *temp;
+
+ temp = cpr3_debugfs_create_corner_int(vreg, "floor_volt", S_IRUGO,
+ corner_dir, index, offsetof(struct cpr3_corner, floor_volt));
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(vreg, "floor_volt debugfs file creation failed\n");
+ return;
+ }
+
+ temp = cpr3_debugfs_create_corner_int(vreg, "ceiling_volt", S_IRUGO,
+ corner_dir, index, offsetof(struct cpr3_corner, ceiling_volt));
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(vreg, "ceiling_volt debugfs file creation failed\n");
+ return;
+ }
+
+ temp = cpr3_debugfs_create_corner_int(vreg, "open_loop_volt", S_IRUGO,
+ corner_dir, index,
+ offsetof(struct cpr3_corner, open_loop_volt));
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(vreg, "open_loop_volt debugfs file creation failed\n");
+ return;
+ }
+
+ temp = cpr3_debugfs_create_corner_int(vreg, "last_volt", S_IRUGO,
+ corner_dir, index, offsetof(struct cpr3_corner, last_volt));
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(vreg, "last_volt debugfs file creation failed\n");
+ return;
+ }
+
+ info = devm_kzalloc(vreg->thread->ctrl->dev, sizeof(*info), GFP_KERNEL);
+ if (!info)
+ return;
+
+ info->vreg = vreg;
+ info->index = index;
+ info->corner = vreg->corner;
+
+ temp = debugfs_create_file("target_quots", S_IRUGO, corner_dir,
+ info, &cpr3_debug_quot_fops);
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(vreg, "target_quots debugfs file creation failed\n");
+ return;
+ }
+}
+
+/**
+ * cpr3_debug_corner_index_set() - debugfs callback used to change the
+ * value of the CPR3 regulator debug_corner index
+ * @data: Pointer to private data which is equal to the CPR3
+ * regulator pointer
+ * @val: New value for debug_corner
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_debug_corner_index_set(void *data, u64 val)
+{
+ struct cpr3_regulator *vreg = data;
+
+ if (val < CPR3_CORNER_OFFSET || val > vreg->corner_count) {
+ cpr3_err(vreg, "invalid corner index %llu; allowed values: %d-%d\n",
+ val, CPR3_CORNER_OFFSET, vreg->corner_count);
+ return -EINVAL;
+ }
+
+ mutex_lock(&vreg->thread->ctrl->lock);
+ vreg->debug_corner = val - CPR3_CORNER_OFFSET;
+ mutex_unlock(&vreg->thread->ctrl->lock);
+
+ return 0;
+}
+
+/**
+ * cpr3_debug_corner_index_get() - debugfs callback used to retrieve
+ * the value of the CPR3 regulator debug_corner index
+ * @data: Pointer to private data which is equal to the CPR3
+ * regulator pointer
+ * @val: Output parameter written with the value of
+ * debug_corner
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_debug_corner_index_get(void *data, u64 *val)
+{
+ struct cpr3_regulator *vreg = data;
+
+ *val = vreg->debug_corner + CPR3_CORNER_OFFSET;
+
+ return 0;
+}
+DEFINE_SIMPLE_ATTRIBUTE(cpr3_debug_corner_index_fops,
+ cpr3_debug_corner_index_get,
+ cpr3_debug_corner_index_set,
+ "%llu\n");
+
+/**
+ * cpr3_debug_current_corner_index_get() - debugfs callback used to retrieve
+ * the value of the CPR3 regulator current_corner index
+ * @data: Pointer to private data which is equal to the CPR3
+ * regulator pointer
+ * @val: Output parameter written with the value of
+ * current_corner
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_debug_current_corner_index_get(void *data, u64 *val)
+{
+ struct cpr3_regulator *vreg = data;
+
+ *val = vreg->current_corner + CPR3_CORNER_OFFSET;
+
+ return 0;
+}
+DEFINE_SIMPLE_ATTRIBUTE(cpr3_debug_current_corner_index_fops,
+ cpr3_debug_current_corner_index_get,
+ NULL, "%llu\n");
+
+/**
+ * cpr3_regulator_debugfs_vreg_add() - add debugfs files to expose configuration
+ * data for the CPR3 regulator
+ * @vreg: Pointer to the CPR3 regulator
+ * @thread_dir CPR3 thread debugfs directory handle
+ *
+ * Return: none
+ */
+static void cpr3_regulator_debugfs_vreg_add(struct cpr3_regulator *vreg,
+ struct dentry *thread_dir)
+{
+ struct dentry *temp, *corner_dir, *vreg_dir;
+
+ vreg_dir = debugfs_create_dir(vreg->name, thread_dir);
+ if (IS_ERR_OR_NULL(vreg_dir)) {
+ cpr3_err(vreg, "%s debugfs directory creation failed\n",
+ vreg->name);
+ return;
+ }
+
+ temp = debugfs_create_int("speed_bin_fuse", S_IRUGO, vreg_dir,
+ &vreg->speed_bin_fuse);
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(vreg, "speed_bin_fuse debugfs file creation failed\n");
+ return;
+ }
+
+ temp = debugfs_create_int("cpr_rev_fuse", S_IRUGO, vreg_dir,
+ &vreg->cpr_rev_fuse);
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(vreg, "cpr_rev_fuse debugfs file creation failed\n");
+ return;
+ }
+
+ temp = debugfs_create_int("fuse_combo", S_IRUGO, vreg_dir,
+ &vreg->fuse_combo);
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(vreg, "fuse_combo debugfs file creation failed\n");
+ return;
+ }
+
+ temp = debugfs_create_int("corner_count", S_IRUGO, vreg_dir,
+ &vreg->corner_count);
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(vreg, "corner_count debugfs file creation failed\n");
+ return;
+ }
+
+ corner_dir = debugfs_create_dir("corner", vreg_dir);
+ if (IS_ERR_OR_NULL(corner_dir)) {
+ cpr3_err(vreg, "corner debugfs directory creation failed\n");
+ return;
+ }
+
+ temp = debugfs_create_file("index", S_IRUGO | S_IWUSR, corner_dir,
+ vreg, &cpr3_debug_corner_index_fops);
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(vreg, "index debugfs file creation failed\n");
+ return;
+ }
+
+ cpr3_regulator_debugfs_corner_add(vreg, corner_dir,
+ &vreg->debug_corner);
+
+ corner_dir = debugfs_create_dir("current_corner", vreg_dir);
+ if (IS_ERR_OR_NULL(corner_dir)) {
+ cpr3_err(vreg, "current_corner debugfs directory creation failed\n");
+ return;
+ }
+
+ temp = debugfs_create_file("index", S_IRUGO, corner_dir,
+ vreg, &cpr3_debug_current_corner_index_fops);
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(vreg, "index debugfs file creation failed\n");
+ return;
+ }
+
+ cpr3_regulator_debugfs_corner_add(vreg, corner_dir,
+ &vreg->current_corner);
+}
+
+/**
+ * cpr3_regulator_debugfs_thread_add() - add debugfs files to expose
+ * configuration data for the CPR thread
+ * @thread: Pointer to the CPR3 thread
+ *
+ * Return: none
+ */
+static void cpr3_regulator_debugfs_thread_add(struct cpr3_thread *thread)
+{
+ struct cpr3_controller *ctrl = thread->ctrl;
+ struct dentry *aggr_dir, *temp, *thread_dir;
+ struct cpr3_debug_corner_info *info;
+ char buf[20];
+ int *index;
+ int i;
+
+ scnprintf(buf, sizeof(buf), "thread%u", thread->thread_id);
+ thread_dir = debugfs_create_dir(buf, thread->ctrl->debugfs);
+ if (IS_ERR_OR_NULL(thread_dir)) {
+ cpr3_err(ctrl, "thread %u %s debugfs directory creation failed\n",
+ thread->thread_id, buf);
+ return;
+ }
+
+ aggr_dir = debugfs_create_dir("max_aggregated_params", thread_dir);
+ if (IS_ERR_OR_NULL(aggr_dir)) {
+ cpr3_err(ctrl, "thread %u max_aggregated_params debugfs directory creation failed\n",
+ thread->thread_id);
+ return;
+ }
+
+ temp = debugfs_create_int("floor_volt", S_IRUGO, aggr_dir,
+ &thread->aggr_corner.floor_volt);
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(ctrl, "thread %u aggr floor_volt debugfs file creation failed\n",
+ thread->thread_id);
+ return;
+ }
+
+ temp = debugfs_create_int("ceiling_volt", S_IRUGO, aggr_dir,
+ &thread->aggr_corner.ceiling_volt);
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(ctrl, "thread %u aggr ceiling_volt debugfs file creation failed\n",
+ thread->thread_id);
+ return;
+ }
+
+ temp = debugfs_create_int("open_loop_volt", S_IRUGO, aggr_dir,
+ &thread->aggr_corner.open_loop_volt);
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(ctrl, "thread %u aggr open_loop_volt debugfs file creation failed\n",
+ thread->thread_id);
+ return;
+ }
+
+ temp = debugfs_create_int("last_volt", S_IRUGO, aggr_dir,
+ &thread->aggr_corner.last_volt);
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(ctrl, "thread %u aggr last_volt debugfs file creation failed\n",
+ thread->thread_id);
+ return;
+ }
+
+ info = devm_kzalloc(thread->ctrl->dev, sizeof(*info), GFP_KERNEL);
+ index = devm_kzalloc(thread->ctrl->dev, sizeof(*index), GFP_KERNEL);
+ if (!info || !index)
+ return;
+ *index = 0;
+ info->vreg = &thread->vreg[0];
+ info->index = index;
+ info->corner = &thread->aggr_corner;
+
+ temp = debugfs_create_file("target_quots", S_IRUGO, aggr_dir,
+ info, &cpr3_debug_quot_fops);
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(ctrl, "thread %u target_quots debugfs file creation failed\n",
+ thread->thread_id);
+ return;
+ }
+
+ for (i = 0; i < thread->vreg_count; i++)
+ cpr3_regulator_debugfs_vreg_add(&thread->vreg[i], thread_dir);
+}
+
+/**
+ * cpr3_debug_closed_loop_enable_set() - debugfs callback used to change the
+ * value of the CPR controller cpr_allowed_sw flag which enables or
+ * disables closed-loop operation
+ * @data: Pointer to private data which is equal to the CPR
+ * controller pointer
+ * @val: New value for cpr_allowed_sw
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_debug_closed_loop_enable_set(void *data, u64 val)
+{
+ struct cpr3_controller *ctrl = data;
+ bool enable = !!val;
+ int rc;
+
+ mutex_lock(&ctrl->lock);
+
+ if (ctrl->cpr_allowed_sw == enable)
+ goto done;
+
+ if (enable && !ctrl->cpr_allowed_hw) {
+ cpr3_err(ctrl, "CPR closed-loop operation is not allowed\n");
+ goto done;
+ }
+
+ ctrl->cpr_allowed_sw = enable;
+
+ rc = cpr3_regulator_update_ctrl_state(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "could not change CPR enable state=%u, rc=%d\n",
+ enable, rc);
+ goto done;
+ }
+
+ if (ctrl->proc_clock_throttle && !ctrl->cpr_enabled) {
+ rc = cpr3_clock_enable(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "clock enable failed, rc=%d\n",
+ rc);
+ goto done;
+ }
+ ctrl->cpr_enabled = true;
+
+ cpr3_write(ctrl, CPR3_REG_PD_THROTTLE,
+ CPR3_PD_THROTTLE_DISABLE);
+
+ cpr3_clock_disable(ctrl);
+ ctrl->cpr_enabled = false;
+ }
+
+ cpr3_debug(ctrl, "closed-loop=%s\n", enable ? "enabled" : "disabled");
+done:
+ mutex_unlock(&ctrl->lock);
+ return 0;
+}
+
+/**
+ * cpr3_debug_closed_loop_enable_get() - debugfs callback used to retrieve
+ * the value of the CPR controller cpr_allowed_sw flag which
+ * indicates if closed-loop operation is enabled
+ * @data: Pointer to private data which is equal to the CPR
+ * controller pointer
+ * @val: Output parameter written with the value of
+ * cpr_allowed_sw
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_debug_closed_loop_enable_get(void *data, u64 *val)
+{
+ struct cpr3_controller *ctrl = data;
+
+ *val = ctrl->cpr_allowed_sw;
+
+ return 0;
+}
+DEFINE_SIMPLE_ATTRIBUTE(cpr3_debug_closed_loop_enable_fops,
+ cpr3_debug_closed_loop_enable_get,
+ cpr3_debug_closed_loop_enable_set,
+ "%llu\n");
+
+/**
+ * cpr3_debug_hw_closed_loop_enable_set() - debugfs callback used to change the
+ * value of the CPR controller use_hw_closed_loop flag which
+ * switches between software closed-loop and hardware closed-loop
+ * operation for CPR3 and CPR4 controllers and between open-loop
+ * and full hardware closed-loop operation for CPRh controllers.
+ * @data: Pointer to private data which is equal to the CPR
+ * controller pointer
+ * @val: New value for use_hw_closed_loop
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_debug_hw_closed_loop_enable_set(void *data, u64 val)
+{
+ struct cpr3_controller *ctrl = data;
+ bool use_hw_closed_loop = !!val;
+ struct cpr3_regulator *vreg;
+ bool cpr_enabled;
+ int i, j, k, rc;
+
+ mutex_lock(&ctrl->lock);
+
+ if (ctrl->use_hw_closed_loop == use_hw_closed_loop)
+ goto done;
+
+ if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
+ rc = cpr3_ctrl_clear_cpr4_config(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "failed to clear CPR4 configuration,rc=%d\n",
+ rc);
+ goto done;
+ }
+ }
+
+ cpr3_ctrl_loop_disable(ctrl);
+
+ ctrl->use_hw_closed_loop = use_hw_closed_loop;
+
+ cpr_enabled = ctrl->cpr_enabled;
+
+ /* Ensure that CPR clocks are enabled before writing to registers. */
+ if (!cpr_enabled) {
+ rc = cpr3_clock_enable(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "clock enable failed, rc=%d\n", rc);
+ goto done;
+ }
+ ctrl->cpr_enabled = true;
+ }
+
+ if (ctrl->use_hw_closed_loop)
+ cpr3_write(ctrl, CPR3_REG_IRQ_EN, 0);
+
+ if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
+ cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
+ CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_EN_MASK,
+ ctrl->use_hw_closed_loop
+ ? CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_ENABLE
+ : CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_DISABLE);
+ } else if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
+ cpr3_write(ctrl, CPR3_REG_HW_CLOSED_LOOP,
+ ctrl->use_hw_closed_loop
+ ? CPR3_HW_CLOSED_LOOP_ENABLE
+ : CPR3_HW_CLOSED_LOOP_DISABLE);
+ }
+
+ /* Turn off CPR clocks if they were off before this function call. */
+ if (!cpr_enabled) {
+ cpr3_clock_disable(ctrl);
+ ctrl->cpr_enabled = false;
+ }
+
+ if (ctrl->use_hw_closed_loop && ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
+ rc = regulator_enable(ctrl->vdd_limit_regulator);
+ if (rc) {
+ cpr3_err(ctrl, "CPR limit regulator enable failed, rc=%d\n",
+ rc);
+ goto done;
+ }
+ } else if (!ctrl->use_hw_closed_loop
+ && ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
+ rc = regulator_disable(ctrl->vdd_limit_regulator);
+ if (rc) {
+ cpr3_err(ctrl, "CPR limit regulator disable failed, rc=%d\n",
+ rc);
+ goto done;
+ }
+ }
+
+ /*
+ * Due to APM and mem-acc floor restriction constraints,
+ * the closed-loop voltage may be different when using
+ * software closed-loop vs hardware closed-loop. Therefore,
+ * reset the cached closed-loop voltage for all corners to the
+ * corresponding open-loop voltage when switching between
+ * SW and HW closed-loop mode.
+ */
+ for (i = 0; i < ctrl->thread_count; i++) {
+ for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
+ vreg = &ctrl->thread[i].vreg[j];
+ for (k = 0; k < vreg->corner_count; k++)
+ vreg->corner[k].last_volt
+ = vreg->corner[k].open_loop_volt;
+ }
+ }
+
+ /* Skip last_volt caching */
+ ctrl->last_corner_was_closed_loop = false;
+
+ rc = cpr3_regulator_update_ctrl_state(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "could not change CPR HW closed-loop enable state=%u, rc=%d\n",
+ use_hw_closed_loop, rc);
+ goto done;
+ }
+
+ cpr3_debug(ctrl, "CPR mode=%s\n",
+ use_hw_closed_loop ?
+ "HW closed-loop" : "SW closed-loop");
+done:
+ mutex_unlock(&ctrl->lock);
+ return 0;
+}
+
+/**
+ * cpr3_debug_hw_closed_loop_enable_get() - debugfs callback used to retrieve
+ * the value of the CPR controller use_hw_closed_loop flag which
+ * indicates if hardware closed-loop operation is being used in
+ * place of software closed-loop operation
+ * @data: Pointer to private data which is equal to the CPR
+ * controller pointer
+ * @val: Output parameter written with the value of
+ * use_hw_closed_loop
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_debug_hw_closed_loop_enable_get(void *data, u64 *val)
+{
+ struct cpr3_controller *ctrl = data;
+
+ *val = ctrl->use_hw_closed_loop;
+
+ return 0;
+}
+DEFINE_SIMPLE_ATTRIBUTE(cpr3_debug_hw_closed_loop_enable_fops,
+ cpr3_debug_hw_closed_loop_enable_get,
+ cpr3_debug_hw_closed_loop_enable_set,
+ "%llu\n");
+
+/**
+ * cpr3_debug_trigger_aging_measurement_set() - debugfs callback used to trigger
+ * another CPR measurement
+ * @data: Pointer to private data which is equal to the CPR
+ * controller pointer
+ * @val: Unused
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_debug_trigger_aging_measurement_set(void *data, u64 val)
+{
+ struct cpr3_controller *ctrl = data;
+ int rc;
+
+ mutex_lock(&ctrl->lock);
+
+ if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
+ rc = cpr3_ctrl_clear_cpr4_config(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "failed to clear CPR4 configuration,rc=%d\n",
+ rc);
+ goto done;
+ }
+ }
+
+ cpr3_ctrl_loop_disable(ctrl);
+
+ cpr3_regulator_set_aging_ref_adjustment(ctrl, INT_MAX);
+ ctrl->aging_required = true;
+ ctrl->aging_succeeded = false;
+ ctrl->aging_failed = false;
+
+ rc = cpr3_regulator_update_ctrl_state(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "could not update the CPR controller state, rc=%d\n",
+ rc);
+ goto done;
+ }
+
+done:
+ mutex_unlock(&ctrl->lock);
+ return 0;
+}
+DEFINE_SIMPLE_ATTRIBUTE(cpr3_debug_trigger_aging_measurement_fops,
+ NULL,
+ cpr3_debug_trigger_aging_measurement_set,
+ "%llu\n");
+
+/**
+ * cpr3_regulator_debugfs_ctrl_add() - add debugfs files to expose configuration
+ * data for the CPR controller
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: none
+ */
+static void cpr3_regulator_debugfs_ctrl_add(struct cpr3_controller *ctrl)
+{
+ struct dentry *temp, *aggr_dir;
+ int i;
+
+ /* Add cpr3-regulator base directory if it isn't present already. */
+ if (cpr3_debugfs_base == NULL) {
+ cpr3_debugfs_base = debugfs_create_dir("cpr3-regulator", NULL);
+ if (IS_ERR_OR_NULL(cpr3_debugfs_base)) {
+ cpr3_err(ctrl, "cpr3-regulator debugfs base directory creation failed\n");
+ cpr3_debugfs_base = NULL;
+ return;
+ }
+ }
+
+ ctrl->debugfs = debugfs_create_dir(ctrl->name, cpr3_debugfs_base);
+ if (IS_ERR_OR_NULL(ctrl->debugfs)) {
+ cpr3_err(ctrl, "cpr3-regulator controller debugfs directory creation failed\n");
+ return;
+ }
+
+ temp = debugfs_create_file("cpr_closed_loop_enable", S_IRUGO | S_IWUSR,
+ ctrl->debugfs, ctrl,
+ &cpr3_debug_closed_loop_enable_fops);
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(ctrl, "cpr_closed_loop_enable debugfs file creation failed\n");
+ return;
+ }
+
+ if (ctrl->supports_hw_closed_loop) {
+ temp = debugfs_create_file("use_hw_closed_loop",
+ S_IRUGO | S_IWUSR, ctrl->debugfs, ctrl,
+ &cpr3_debug_hw_closed_loop_enable_fops);
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(ctrl, "use_hw_closed_loop debugfs file creation failed\n");
+ return;
+ }
+ }
+
+ temp = debugfs_create_int("thread_count", S_IRUGO, ctrl->debugfs,
+ &ctrl->thread_count);
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(ctrl, "thread_count debugfs file creation failed\n");
+ return;
+ }
+
+ if (ctrl->apm) {
+ temp = debugfs_create_int("apm_threshold_volt", S_IRUGO,
+ ctrl->debugfs, &ctrl->apm_threshold_volt);
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(ctrl, "apm_threshold_volt debugfs file creation failed\n");
+ return;
+ }
+ }
+
+ if (ctrl->aging_required || ctrl->aging_succeeded
+ || ctrl->aging_failed) {
+ temp = debugfs_create_int("aging_adj_volt", S_IRUGO,
+ ctrl->debugfs, &ctrl->aging_ref_adjust_volt);
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(ctrl, "aging_adj_volt debugfs file creation failed\n");
+ return;
+ }
+
+ temp = debugfs_create_file("aging_succeeded", S_IRUGO,
+ ctrl->debugfs, &ctrl->aging_succeeded, &fops_bool_ro);
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(ctrl, "aging_succeeded debugfs file creation failed\n");
+ return;
+ }
+
+ temp = debugfs_create_file("aging_failed", S_IRUGO,
+ ctrl->debugfs, &ctrl->aging_failed, &fops_bool_ro);
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(ctrl, "aging_failed debugfs file creation failed\n");
+ return;
+ }
+
+ temp = debugfs_create_file("aging_trigger", S_IWUSR,
+ ctrl->debugfs, ctrl,
+ &cpr3_debug_trigger_aging_measurement_fops);
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(ctrl, "aging_trigger debugfs file creation failed\n");
+ return;
+ }
+ }
+
+ aggr_dir = debugfs_create_dir("max_aggregated_voltages", ctrl->debugfs);
+ if (IS_ERR_OR_NULL(aggr_dir)) {
+ cpr3_err(ctrl, "max_aggregated_voltages debugfs directory creation failed\n");
+ return;
+ }
+
+ temp = debugfs_create_int("floor_volt", S_IRUGO, aggr_dir,
+ &ctrl->aggr_corner.floor_volt);
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(ctrl, "aggr floor_volt debugfs file creation failed\n");
+ return;
+ }
+
+ temp = debugfs_create_int("ceiling_volt", S_IRUGO, aggr_dir,
+ &ctrl->aggr_corner.ceiling_volt);
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(ctrl, "aggr ceiling_volt debugfs file creation failed\n");
+ return;
+ }
+
+ temp = debugfs_create_int("open_loop_volt", S_IRUGO, aggr_dir,
+ &ctrl->aggr_corner.open_loop_volt);
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(ctrl, "aggr open_loop_volt debugfs file creation failed\n");
+ return;
+ }
+
+ temp = debugfs_create_int("last_volt", S_IRUGO, aggr_dir,
+ &ctrl->aggr_corner.last_volt);
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(ctrl, "aggr last_volt debugfs file creation failed\n");
+ return;
+ }
+
+ for (i = 0; i < ctrl->thread_count; i++)
+ cpr3_regulator_debugfs_thread_add(&ctrl->thread[i]);
+}
+
+/**
+ * cpr3_regulator_debugfs_ctrl_remove() - remove debugfs files for the CPR
+ * controller
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Note, this function must be called after the controller has been removed from
+ * cpr3_controller_list and while the cpr3_controller_list_mutex lock is held.
+ *
+ * Return: none
+ */
+static void cpr3_regulator_debugfs_ctrl_remove(struct cpr3_controller *ctrl)
+{
+ if (list_empty(&cpr3_controller_list)) {
+ debugfs_remove_recursive(cpr3_debugfs_base);
+ cpr3_debugfs_base = NULL;
+ } else {
+ debugfs_remove_recursive(ctrl->debugfs);
+ }
+}
+
+/**
+ * cpr3_regulator_init_ctrl_data() - performs initialization of CPR controller
+ * elements
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_init_ctrl_data(struct cpr3_controller *ctrl)
+{
+ /* Read the initial vdd voltage from hardware. */
+ ctrl->aggr_corner.last_volt
+ = regulator_get_voltage(ctrl->vdd_regulator);
+ if (ctrl->aggr_corner.last_volt < 0) {
+ cpr3_err(ctrl, "regulator_get_voltage(vdd) failed, rc=%d\n",
+ ctrl->aggr_corner.last_volt);
+ return ctrl->aggr_corner.last_volt;
+ }
+ ctrl->aggr_corner.open_loop_volt = ctrl->aggr_corner.last_volt;
+
+ return 0;
+}
+
+/**
+ * cpr3_regulator_init_vreg_data() - performs initialization of common CPR3
+ * regulator elements and validate aging configurations
+ * @vreg: Pointer to the CPR3 regulator
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_init_vreg_data(struct cpr3_regulator *vreg)
+{
+ int i, j;
+ bool init_aging;
+
+ vreg->current_corner = CPR3_REGULATOR_CORNER_INVALID;
+ vreg->last_closed_loop_corner = CPR3_REGULATOR_CORNER_INVALID;
+
+ init_aging = vreg->aging_allowed && vreg->thread->ctrl->aging_required;
+
+ for (i = 0; i < vreg->corner_count; i++) {
+ vreg->corner[i].last_volt = vreg->corner[i].open_loop_volt;
+ vreg->corner[i].irq_en = CPR3_IRQ_UP | CPR3_IRQ_DOWN;
+
+ vreg->corner[i].ro_mask = 0;
+ for (j = 0; j < CPR3_RO_COUNT; j++) {
+ if (vreg->corner[i].target_quot[j] == 0)
+ vreg->corner[i].ro_mask |= BIT(j);
+ }
+
+ if (init_aging) {
+ vreg->corner[i].unaged_floor_volt
+ = vreg->corner[i].floor_volt;
+ vreg->corner[i].unaged_ceiling_volt
+ = vreg->corner[i].ceiling_volt;
+ vreg->corner[i].unaged_open_loop_volt
+ = vreg->corner[i].open_loop_volt;
+ }
+
+ if (vreg->aging_allowed) {
+ if (vreg->corner[i].unaged_floor_volt <= 0) {
+ cpr3_err(vreg, "invalid unaged_floor_volt[%d] = %d\n",
+ i, vreg->corner[i].unaged_floor_volt);
+ return -EINVAL;
+ }
+ if (vreg->corner[i].unaged_ceiling_volt <= 0) {
+ cpr3_err(vreg, "invalid unaged_ceiling_volt[%d] = %d\n",
+ i, vreg->corner[i].unaged_ceiling_volt);
+ return -EINVAL;
+ }
+ if (vreg->corner[i].unaged_open_loop_volt <= 0) {
+ cpr3_err(vreg, "invalid unaged_open_loop_volt[%d] = %d\n",
+ i, vreg->corner[i].unaged_open_loop_volt);
+ return -EINVAL;
+ }
+ }
+ }
+
+ if (vreg->aging_allowed && vreg->corner[vreg->aging_corner].ceiling_volt
+ > vreg->thread->ctrl->aging_ref_volt) {
+ cpr3_err(vreg, "aging corner %d ceiling voltage = %d > aging ref voltage = %d uV\n",
+ vreg->aging_corner,
+ vreg->corner[vreg->aging_corner].ceiling_volt,
+ vreg->thread->ctrl->aging_ref_volt);
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+/**
+ * cpr3_regulator_suspend() - perform common required CPR3 power down steps
+ * before the system enters suspend
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_regulator_suspend(struct cpr3_controller *ctrl)
+{
+ int rc;
+
+ mutex_lock(&ctrl->lock);
+
+ if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
+ rc = cpr3_ctrl_clear_cpr4_config(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "failed to clear CPR4 configuration,rc=%d\n",
+ rc);
+ mutex_unlock(&ctrl->lock);
+ return rc;
+ }
+ }
+
+ cpr3_ctrl_loop_disable(ctrl);
+
+ rc = cpr3_closed_loop_disable(ctrl);
+ if (rc)
+ cpr3_err(ctrl, "could not disable CPR, rc=%d\n", rc);
+
+ ctrl->cpr_suspended = true;
+
+ mutex_unlock(&ctrl->lock);
+ return 0;
+}
+
+/**
+ * cpr3_regulator_resume() - perform common required CPR3 power up steps after
+ * the system resumes from suspend
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_regulator_resume(struct cpr3_controller *ctrl)
+{
+ int rc;
+
+ mutex_lock(&ctrl->lock);
+
+ ctrl->cpr_suspended = false;
+ rc = cpr3_regulator_update_ctrl_state(ctrl);
+ if (rc)
+ cpr3_err(ctrl, "could not enable CPR, rc=%d\n", rc);
+
+ mutex_unlock(&ctrl->lock);
+ return 0;
+}
+
+/**
+ * cpr3_regulator_validate_controller() - verify the data passed in via the
+ * cpr3_controller data structure
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_validate_controller(struct cpr3_controller *ctrl)
+{
+ struct cpr3_thread *thread;
+ struct cpr3_regulator *vreg;
+ int i, j, allow_boost_vreg_count = 0;
+
+ if (!ctrl->vdd_regulator) {
+ cpr3_err(ctrl, "vdd regulator missing\n");
+ return -EINVAL;
+ } else if (ctrl->sensor_count <= 0
+ || ctrl->sensor_count > CPR3_MAX_SENSOR_COUNT) {
+ cpr3_err(ctrl, "invalid CPR sensor count=%d\n",
+ ctrl->sensor_count);
+ return -EINVAL;
+ } else if (!ctrl->sensor_owner) {
+ cpr3_err(ctrl, "CPR sensor ownership table missing\n");
+ return -EINVAL;
+ }
+
+ if (ctrl->aging_required) {
+ for (i = 0; i < ctrl->aging_sensor_count; i++) {
+ if (ctrl->aging_sensor[i].sensor_id
+ >= ctrl->sensor_count) {
+ cpr3_err(ctrl, "aging_sensor[%d] id=%u is not in the value range 0-%d",
+ i, ctrl->aging_sensor[i].sensor_id,
+ ctrl->sensor_count - 1);
+ return -EINVAL;
+ }
+ }
+ }
+
+ for (i = 0; i < ctrl->thread_count; i++) {
+ thread = &ctrl->thread[i];
+ for (j = 0; j < thread->vreg_count; j++) {
+ vreg = &thread->vreg[j];
+ if (vreg->allow_boost)
+ allow_boost_vreg_count++;
+ }
+ }
+
+ if (allow_boost_vreg_count > 1) {
+ /*
+ * Boost feature is not allowed to be used for more
+ * than one CPR3 regulator of a CPR3 controller.
+ */
+ cpr3_err(ctrl, "Boost feature is enabled for more than one regulator\n");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+/**
+ * cpr3_panic_callback() - panic notification callback function. This function
+ * is invoked when a kernel panic occurs.
+ * @nfb: Notifier block pointer of CPR3 controller
+ * @event: Value passed unmodified to notifier function
+ * @data: Pointer passed unmodified to notifier function
+ *
+ * Return: NOTIFY_OK
+ */
+static int cpr3_panic_callback(struct notifier_block *nfb,
+ unsigned long event, void *data)
+{
+ struct cpr3_controller *ctrl = container_of(nfb,
+ struct cpr3_controller, panic_notifier);
+ struct cpr3_panic_regs_info *regs_info = ctrl->panic_regs_info;
+ struct cpr3_reg_info *reg;
+ int i = 0;
+
+ for (i = 0; i < regs_info->reg_count; i++) {
+ reg = &(regs_info->regs[i]);
+ reg->value = readl_relaxed(reg->virt_addr);
+ pr_err("%s[0x%08x] = 0x%08x\n", reg->name, reg->addr,
+ reg->value);
+ }
+ /*
+ * Barrier to ensure that the information has been updated in the
+ * structure.
+ */
+ mb();
+
+ return NOTIFY_OK;
+}
+
+/**
+ * cpr3_regulator_register() - register the regulators for a CPR3 controller and
+ * perform CPR hardware initialization
+ * @pdev: Platform device pointer for the CPR3 controller
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_regulator_register(struct platform_device *pdev,
+ struct cpr3_controller *ctrl)
+{
+ struct device *dev = &pdev->dev;
+ struct resource *res;
+ int i, j, rc;
+
+ if (!dev->of_node) {
+ dev_err(dev, "%s: Device tree node is missing\n", __func__);
+ return -EINVAL;
+ }
+
+ if (!ctrl || !ctrl->name) {
+ dev_err(dev, "%s: CPR controller data is missing\n", __func__);
+ return -EINVAL;
+ }
+
+ rc = cpr3_regulator_validate_controller(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "controller validation failed, rc=%d\n", rc);
+ return rc;
+ }
+
+ mutex_init(&ctrl->lock);
+
+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cpr_ctrl");
+ if (!res || !res->start) {
+ cpr3_err(ctrl, "CPR controller address is missing\n");
+ return -ENXIO;
+ }
+ ctrl->cpr_ctrl_base = devm_ioremap(dev, res->start, resource_size(res));
+
+ if (ctrl->aging_possible_mask) {
+ /*
+ * Aging possible register address is required if an aging
+ * possible mask has been specified.
+ */
+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
+ "aging_allowed");
+ if (!res || !res->start) {
+ cpr3_err(ctrl, "CPR aging allowed address is missing\n");
+ return -ENXIO;
+ }
+ ctrl->aging_possible_reg = devm_ioremap(dev, res->start,
+ resource_size(res));
+ }
+
+ ctrl->irq = platform_get_irq_byname(pdev, "cpr");
+ if (ctrl->irq < 0) {
+ cpr3_err(ctrl, "missing CPR interrupt\n");
+ return ctrl->irq;
+ }
+
+ if (ctrl->supports_hw_closed_loop) {
+ if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
+ ctrl->ceiling_irq = platform_get_irq_byname(pdev,
+ "ceiling");
+ if (ctrl->ceiling_irq < 0) {
+ cpr3_err(ctrl, "missing ceiling interrupt\n");
+ return ctrl->ceiling_irq;
+ }
+ }
+ }
+
+ rc = cpr3_regulator_init_ctrl_data(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "CPR controller data initialization failed, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ for (i = 0; i < ctrl->thread_count; i++) {
+ for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
+ rc = cpr3_regulator_init_vreg_data(
+ &ctrl->thread[i].vreg[j]);
+ if (rc)
+ return rc;
+ cpr3_print_quots(&ctrl->thread[i].vreg[j]);
+ }
+ }
+
+ /*
+ * Add the maximum possible aging voltage margin until it is possible
+ * to perform an aging measurement.
+ */
+ if (ctrl->aging_required)
+ cpr3_regulator_set_aging_ref_adjustment(ctrl, INT_MAX);
+
+ rc = cpr3_regulator_init_ctrl(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "CPR controller initialization failed, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ /* Register regulator devices for all threads. */
+ for (i = 0; i < ctrl->thread_count; i++) {
+ for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
+ rc = cpr3_regulator_vreg_register(
+ &ctrl->thread[i].vreg[j]);
+ if (rc) {
+ cpr3_err(&ctrl->thread[i].vreg[j], "failed to register regulator, rc=%d\n",
+ rc);
+ goto free_regulators;
+ }
+ }
+ }
+
+ rc = devm_request_threaded_irq(dev, ctrl->irq, NULL,
+ cpr3_irq_handler,
+ IRQF_ONESHOT |
+ IRQF_TRIGGER_RISING,
+ "cpr3", ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "could not request IRQ %d, rc=%d\n",
+ ctrl->irq, rc);
+ goto free_regulators;
+ }
+
+ if (ctrl->supports_hw_closed_loop &&
+ ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
+ rc = devm_request_threaded_irq(dev, ctrl->ceiling_irq, NULL,
+ cpr3_ceiling_irq_handler,
+ IRQF_ONESHOT | IRQF_TRIGGER_RISING,
+ "cpr3_ceiling", ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "could not request ceiling IRQ %d, rc=%d\n",
+ ctrl->ceiling_irq, rc);
+ goto free_regulators;
+ }
+ }
+
+ mutex_lock(&cpr3_controller_list_mutex);
+ cpr3_regulator_debugfs_ctrl_add(ctrl);
+ list_add(&ctrl->list, &cpr3_controller_list);
+ mutex_unlock(&cpr3_controller_list_mutex);
+
+ if (ctrl->panic_regs_info) {
+ /* Register panic notification call back */
+ ctrl->panic_notifier.notifier_call = cpr3_panic_callback;
+ atomic_notifier_chain_register(&panic_notifier_list,
+ &ctrl->panic_notifier);
+ }
+
+ return 0;
+
+free_regulators:
+ for (i = 0; i < ctrl->thread_count; i++)
+ for (j = 0; j < ctrl->thread[i].vreg_count; j++)
+ if (!IS_ERR_OR_NULL(ctrl->thread[i].vreg[j].rdev))
+ regulator_unregister(
+ ctrl->thread[i].vreg[j].rdev);
+ return rc;
+}
+
+/**
+ * cpr3_open_loop_regulator_register() - register the regulators for a CPR3
+ * controller which will always work in Open loop and
+ * won't support close loop.
+ * @pdev: Platform device pointer for the CPR3 controller
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_open_loop_regulator_register(struct platform_device *pdev,
+ struct cpr3_controller *ctrl)
+{
+ struct device *dev = &pdev->dev;
+ struct cpr3_regulator *vreg;
+ int i, j, rc;
+
+ if (!dev->of_node) {
+ dev_err(dev, "%s: Device tree node is missing\n", __func__);
+ return -EINVAL;
+ }
+
+ if (!ctrl || !ctrl->name) {
+ dev_err(dev, "%s: CPR controller data is missing\n", __func__);
+ return -EINVAL;
+ }
+
+ if (!ctrl->vdd_regulator) {
+ cpr3_err(ctrl, "vdd regulator missing\n");
+ return -EINVAL;
+ }
+
+ mutex_init(&ctrl->lock);
+
+ rc = cpr3_regulator_init_ctrl_data(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "CPR controller data initialization failed, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ for (i = 0; i < ctrl->thread_count; i++) {
+ for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
+ vreg = &ctrl->thread[i].vreg[j];
+ vreg->corner[i].last_volt =
+ vreg->corner[i].open_loop_volt;
+ }
+ }
+
+ /* Register regulator devices for all threads. */
+ for (i = 0; i < ctrl->thread_count; i++) {
+ for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
+ rc = cpr3_regulator_vreg_register(
+ &ctrl->thread[i].vreg[j]);
+ if (rc) {
+ cpr3_err(&ctrl->thread[i].vreg[j], "failed to register regulator, rc=%d\n",
+ rc);
+ goto free_regulators;
+ }
+ }
+ }
+
+ mutex_lock(&cpr3_controller_list_mutex);
+ list_add(&ctrl->list, &cpr3_controller_list);
+ mutex_unlock(&cpr3_controller_list_mutex);
+
+ return 0;
+
+free_regulators:
+ for (i = 0; i < ctrl->thread_count; i++)
+ for (j = 0; j < ctrl->thread[i].vreg_count; j++)
+ if (!IS_ERR_OR_NULL(ctrl->thread[i].vreg[j].rdev))
+ regulator_unregister(
+ ctrl->thread[i].vreg[j].rdev);
+ return rc;
+}
+
+/**
+ * cpr3_regulator_unregister() - unregister the regulators for a CPR3 controller
+ * and perform CPR hardware shutdown
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_regulator_unregister(struct cpr3_controller *ctrl)
+{
+ int i, j, rc = 0;
+
+ mutex_lock(&cpr3_controller_list_mutex);
+ list_del(&ctrl->list);
+ cpr3_regulator_debugfs_ctrl_remove(ctrl);
+ mutex_unlock(&cpr3_controller_list_mutex);
+
+ if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
+ rc = cpr3_ctrl_clear_cpr4_config(ctrl);
+ if (rc)
+ cpr3_err(ctrl, "failed to clear CPR4 configuration,rc=%d\n",
+ rc);
+ }
+
+ cpr3_ctrl_loop_disable(ctrl);
+
+ cpr3_closed_loop_disable(ctrl);
+
+ if (ctrl->vdd_limit_regulator) {
+ regulator_disable(ctrl->vdd_limit_regulator);
+ }
+
+ for (i = 0; i < ctrl->thread_count; i++)
+ for (j = 0; j < ctrl->thread[i].vreg_count; j++)
+ regulator_unregister(ctrl->thread[i].vreg[j].rdev);
+
+ if (ctrl->panic_notifier.notifier_call)
+ atomic_notifier_chain_unregister(&panic_notifier_list,
+ &ctrl->panic_notifier);
+
+ return 0;
+}
+
+/**
+ * cpr3_open_loop_regulator_unregister() - unregister the regulators for a CPR3
+ * open loop controller and perform CPR hardware shutdown
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_open_loop_regulator_unregister(struct cpr3_controller *ctrl)
+{
+ int i, j;
+
+ mutex_lock(&cpr3_controller_list_mutex);
+ list_del(&ctrl->list);
+ mutex_unlock(&cpr3_controller_list_mutex);
+
+ if (ctrl->vdd_limit_regulator) {
+ regulator_disable(ctrl->vdd_limit_regulator);
+ }
+
+ for (i = 0; i < ctrl->thread_count; i++)
+ for (j = 0; j < ctrl->thread[i].vreg_count; j++)
+ regulator_unregister(ctrl->thread[i].vreg[j].rdev);
+
+ if (ctrl->panic_notifier.notifier_call)
+ atomic_notifier_chain_unregister(&panic_notifier_list,
+ &ctrl->panic_notifier);
+
+ return 0;
+}
--- /dev/null
+++ b/drivers/regulator/cpr3-regulator.h
@@ -0,0 +1,1211 @@
+/*
+ * Copyright (c) 2015-2017, The Linux Foundation. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 and
+ * only version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ */
+
+#ifndef __REGULATOR_CPR3_REGULATOR_H__
+#define __REGULATOR_CPR3_REGULATOR_H__
+
+#include <linux/clk.h>
+#include <linux/mutex.h>
+#include <linux/of.h>
+#include <linux/platform_device.h>
+#include <linux/types.h>
+#include <linux/power/qcom/apm.h>
+#include <linux/regulator/driver.h>
+
+struct cpr3_controller;
+struct cpr3_thread;
+
+/**
+ * struct cpr3_fuse_param - defines one contiguous segment of a fuse parameter
+ * that is contained within a given row.
+ * @row: Fuse row number
+ * @bit_start: The first bit within the row of the fuse parameter segment
+ * @bit_end: The last bit within the row of the fuse parameter segment
+ *
+ * Each fuse row is 64 bits in length. bit_start and bit_end may take values
+ * from 0 to 63. bit_start must be less than or equal to bit_end.
+ */
+struct cpr3_fuse_param {
+ unsigned row;
+ unsigned bit_start;
+ unsigned bit_end;
+};
+
+/* Each CPR3 sensor has 16 ring oscillators */
+#define CPR3_RO_COUNT 16
+
+/* The maximum number of sensors that can be present on a single CPR loop. */
+#define CPR3_MAX_SENSOR_COUNT 256
+
+/* This constant is used when allocating array printing buffers. */
+#define MAX_CHARS_PER_INT 10
+
+/**
+ * struct cpr4_sdelta - CPR4 controller specific data structure for the sdelta
+ * adjustment table which is used to adjust the VDD supply
+ * voltage automatically based upon the temperature and/or
+ * the number of online CPU cores.
+ * @allow_core_count_adj: Core count adjustments are allowed.
+ * @allow_temp_adj: Temperature based adjustments are allowed.
+ * @max_core_count: Maximum number of cores considered for core count
+ * adjustment logic.
+ * @temp_band_count: Number of temperature bands considered for temperature
+ * based adjustment logic.
+ * @cap_volt: CAP in uV to apply to SDELTA margins with multiple
+ * cpr3-regulators defined for single controller.
+ * @table: SDELTA table with per-online-core and temperature based
+ * adjustments of size (max_core_count * temp_band_count)
+ * Outer: core count
+ * Inner: temperature band
+ * Each element has units of VDD supply steps. Positive
+ * values correspond to a reduction in voltage and negative
+ * value correspond to an increase (this follows the SDELTA
+ * register semantics).
+ * @allow_boost: Voltage boost allowed.
+ * @boost_num_cores: The number of online cores at which the boost voltage
+ * adjustments will be applied
+ * @boost_table: SDELTA table with boost voltage adjustments of size
+ * temp_band_count. Each element has units of VDD supply
+ * steps. Positive values correspond to a reduction in
+ * voltage and negative value correspond to an increase
+ * (this follows the SDELTA register semantics).
+ */
+struct cpr4_sdelta {
+ bool allow_core_count_adj;
+ bool allow_temp_adj;
+ int max_core_count;
+ int temp_band_count;
+ int cap_volt;
+ int *table;
+ bool allow_boost;
+ int boost_num_cores;
+ int *boost_table;
+};
+
+/**
+ * struct cpr3_corner - CPR3 virtual voltage corner data structure
+ * @floor_volt: CPR closed-loop floor voltage in microvolts
+ * @ceiling_volt: CPR closed-loop ceiling voltage in microvolts
+ * @open_loop_volt: CPR open-loop voltage (i.e. initial voltage) in
+ * microvolts
+ * @last_volt: Last known settled CPR closed-loop voltage which is used
+ * when switching to a new corner
+ * @abs_ceiling_volt: The absolute CPR closed-loop ceiling voltage in
+ * microvolts. This is used to limit the ceiling_volt
+ * value when it is increased as a result of aging
+ * adjustment.
+ * @unaged_floor_volt: The CPR closed-loop floor voltage in microvolts before
+ * any aging adjustment is performed
+ * @unaged_ceiling_volt: The CPR closed-loop ceiling voltage in microvolts
+ * before any aging adjustment is performed
+ * @unaged_open_loop_volt: The CPR open-loop voltage (i.e. initial voltage) in
+ * microvolts before any aging adjusment is performed
+ * @system_volt: The system-supply voltage in microvolts or corners or
+ * levels
+ * @mem_acc_volt: The mem-acc-supply voltage in corners
+ * @proc_freq: Processor frequency in Hertz. For CPR rev. 3 and 4
+ * conrollers, this field is only used by platform specific
+ * CPR3 driver for interpolation. For CPRh-compliant
+ * controllers, this frequency is also utilized by the
+ * clock driver to determine the corner to CPU clock
+ * frequency mappings.
+ * @cpr_fuse_corner: Fused corner index associated with this virtual corner
+ * (only used by platform specific CPR3 driver for
+ * mapping purposes)
+ * @target_quot: Array of target quotient values to use for each ring
+ * oscillator (RO) for this corner. A value of 0 should be
+ * specified as the target quotient for each RO that is
+ * unused by this corner.
+ * @ro_scale: Array of CPR ring oscillator (RO) scaling factors. The
+ * scaling factor for each RO is defined from RO0 to RO15
+ * with units of QUOT/V. A value of 0 may be specified for
+ * an RO that is unused.
+ * @ro_mask: Bitmap where each of the 16 LSBs indicate if the
+ * corresponding ROs should be masked for this corner
+ * @irq_en: Bitmap of the CPR interrupts to enable for this corner
+ * @aging_derate: The amount to derate the aging voltage adjustment
+ * determined for the reference corner in units of uV/mV.
+ * E.g. a value of 900 would imply that the adjustment for
+ * this corner should be 90% (900/1000) of that for the
+ * reference corner.
+ * @use_open_loop: Boolean indicating that open-loop (i.e CPR disabled) as
+ * opposed to closed-loop operation must be used for this
+ * corner on CPRh controllers.
+ * @sdelta: The CPR4 controller specific data for this corner. This
+ * field is applicable for CPR4 controllers.
+ *
+ * The value of last_volt is initialized inside of the cpr3_regulator_register()
+ * call with the open_loop_volt value. It can later be updated to the settled
+ * VDD supply voltage. The values for unaged_floor_volt, unaged_ceiling_volt,
+ * and unaged_open_loop_volt are initialized inside of cpr3_regulator_register()
+ * if ctrl->aging_required == true. These three values must be pre-initialized
+ * if cpr3_regulator_register() is called with ctrl->aging_required == false and
+ * ctrl->aging_succeeded == true.
+ *
+ * The values of ro_mask and irq_en are initialized inside of the
+ * cpr3_regulator_register() call.
+ */
+struct cpr3_corner {
+ int floor_volt;
+ int ceiling_volt;
+ int cold_temp_open_loop_volt;
+ int normal_temp_open_loop_volt;
+ int open_loop_volt;
+ int last_volt;
+ int abs_ceiling_volt;
+ int unaged_floor_volt;
+ int unaged_ceiling_volt;
+ int unaged_open_loop_volt;
+ int system_volt;
+ int mem_acc_volt;
+ u32 proc_freq;
+ int cpr_fuse_corner;
+ u32 target_quot[CPR3_RO_COUNT];
+ u32 ro_scale[CPR3_RO_COUNT];
+ u32 ro_mask;
+ u32 irq_en;
+ int aging_derate;
+ bool use_open_loop;
+ struct cpr4_sdelta *sdelta;
+};
+
+/**
+ * struct cprh_corner_band - CPRh controller specific data structure which
+ * encapsulates the range of corners and the SDELTA
+ * adjustment table to be applied to the corners within
+ * the min and max bounds of the corner band.
+ * @corner: Corner number which defines the corner band boundary
+ * @sdelta: The SDELTA adjustment table which contains core-count
+ * and temp based margin adjustments that are applicable
+ * to the corner band.
+ */
+struct cprh_corner_band {
+ int corner;
+ struct cpr4_sdelta *sdelta;
+};
+
+/**
+ * struct cpr3_fuse_parameters - CPR4 fuse specific data structure which has
+ * the required fuse parameters need for Close Loop CPR
+ * @(*apss_ro_sel_param)[2]: Pointer to RO select fuse details
+ * @(*apss_init_voltage_param)[2]: Pointer to Target voltage fuse details
+ * @(*apss_target_quot_param)[2]: Pointer to Target quot fuse details
+ * @(*apss_quot_offset_param)[2]: Pointer to quot offset fuse details
+ * @cpr_fusing_rev_param: Pointer to CPR revision fuse details
+ * @apss_speed_bin_param: Pointer to Speed bin fuse details
+ * @cpr_boost_fuse_cfg_param: Pointer to Boost fuse cfg details
+ * @apss_boost_fuse_volt_param: Pointer to Boost fuse volt details
+ * @misc_fuse_volt_adj_param: Pointer to Misc fuse volt fuse details
+ */
+struct cpr3_fuse_parameters {
+ struct cpr3_fuse_param (*apss_ro_sel_param)[2];
+ struct cpr3_fuse_param (*apss_init_voltage_param)[2];
+ struct cpr3_fuse_param (*apss_target_quot_param)[2];
+ struct cpr3_fuse_param (*apss_quot_offset_param)[2];
+ struct cpr3_fuse_param *cpr_fusing_rev_param;
+ struct cpr3_fuse_param *apss_speed_bin_param;
+ struct cpr3_fuse_param *cpr_boost_fuse_cfg_param;
+ struct cpr3_fuse_param *apss_boost_fuse_volt_param;
+ struct cpr3_fuse_param *misc_fuse_volt_adj_param;
+};
+
+struct cpr4_mem_acc_func {
+ void (*set_mem_acc)(struct regulator_dev *);
+ void (*clear_mem_acc)(struct regulator_dev *);
+};
+
+/**
+ * struct cpr4_reg_data - CPR4 regulator specific data structure which is
+ * target specific
+ * @cpr_valid_fuse_count: Number of valid fuse corners
+ * @fuse_ref_volt: Pointer to fuse reference voltage
+ * @fuse_step_volt: CPR step voltage available in fuse
+ * @cpr_clk_rate: CPR clock rate
+ * @boost_fuse_ref_volt: Boost fuse reference voltage
+ * @boost_ceiling_volt: Boost ceiling voltage
+ * @boost_floor_volt: Boost floor voltage
+ * @cpr3_fuse_params: Pointer to CPR fuse parameters
+ * @mem_acc_funcs: Pointer to MEM ACC set/clear functions
+ **/
+struct cpr4_reg_data {
+ u32 cpr_valid_fuse_count;
+ int *fuse_ref_volt;
+ u32 fuse_step_volt;
+ u32 cpr_clk_rate;
+ int boost_fuse_ref_volt;
+ int boost_ceiling_volt;
+ int boost_floor_volt;
+ struct cpr3_fuse_parameters *cpr3_fuse_params;
+ struct cpr4_mem_acc_func *mem_acc_funcs;
+};
+/**
+ * struct cpr3_reg_data - CPR3 regulator specific data structure which is
+ * target specific
+ * @cpr_valid_fuse_count: Number of valid fuse corners
+ * @(*init_voltage_param)[2]: Pointer to Target voltage fuse details
+ * @fuse_ref_volt: Pointer to fuse reference voltage
+ * @fuse_step_volt: CPR step voltage available in fuse
+ * @cpr_clk_rate: CPR clock rate
+ * @cpr3_fuse_params: Pointer to CPR fuse parameters
+ **/
+struct cpr3_reg_data {
+ u32 cpr_valid_fuse_count;
+ struct cpr3_fuse_param (*init_voltage_param)[2];
+ int *fuse_ref_volt;
+ u32 fuse_step_volt;
+ u32 cpr_clk_rate;
+};
+
+/**
+ * struct cpr3_regulator - CPR3 logical regulator instance associated with a
+ * given CPR3 hardware thread
+ * @of_node: Device node associated with the device tree child node
+ * of this CPR3 regulator
+ * @thread: Pointer to the CPR3 thread which manages this CPR3
+ * regulator
+ * @name: Unique name for this CPR3 regulator which is filled
+ * using the device tree regulator-name property
+ * @rdesc: Regulator description for this CPR3 regulator
+ * @rdev: Regulator device pointer for the regulator registered
+ * for this CPR3 regulator
+ * @mem_acc_regulator: Pointer to the optional mem-acc supply regulator used
+ * to manage memory circuitry settings based upon CPR3
+ * regulator output voltage.
+ * @corner: Array of all corners supported by this CPR3 regulator
+ * @corner_count: The number of elements in the corner array
+ * @corner_band: Array of all corner bands supported by CPRh compatible
+ * controllers
+ * @cpr4_regulator_data Target specific cpr4 regulator data
+ * @cpr3_regulator_data Target specific cpr3 regulator data
+ * @corner_band_count: The number of elements in the corner band array
+ * @platform_fuses: Pointer to platform specific CPR fuse data (only used by
+ * platform specific CPR3 driver)
+ * @speed_bin_fuse: Value read from the speed bin fuse parameter
+ * @speed_bins_supported: The number of speed bins supported by the device tree
+ * configuration for this CPR3 regulator
+ * @cpr_rev_fuse: Value read from the CPR fusing revision fuse parameter
+ * @fuse_combo: Platform specific enum value identifying the specific
+ * combination of fuse values found on a given chip
+ * @fuse_combos_supported: The number of fuse combinations supported by the
+ * device tree configuration for this CPR3 regulator
+ * @fuse_corner_count: Number of corners defined by fuse parameters
+ * @fuse_corner_map: Array of length fuse_corner_count which specifies the
+ * highest corner associated with each fuse corner. Note
+ * that each element must correspond to a valid corner
+ * and that element values must be strictly increasing.
+ * Also, it is acceptable for the lowest fuse corner to map
+ * to a corner other than the lowest. Likewise, it is
+ * acceptable for the highest fuse corner to map to a
+ * corner other than the highest.
+ * @fuse_combo_corner_sum: The sum of the corner counts across all fuse combos
+ * @fuse_combo_offset: The device tree property array offset for the selected
+ * fuse combo
+ * @speed_bin_corner_sum: The sum of the corner counts across all speed bins
+ * This may be specified as 0 if per speed bin parsing
+ * support is not required.
+ * @speed_bin_offset: The device tree property array offset for the selected
+ * speed bin
+ * @fuse_combo_corner_band_sum: The sum of the corner band counts across all
+ * fuse combos
+ * @fuse_combo_corner_band_offset: The device tree property array offset for
+ * the corner band count corresponding to the selected
+ * fuse combo
+ * @speed_bin_corner_band_sum: The sum of the corner band counts across all
+ * speed bins. This may be specified as 0 if per speed bin
+ * parsing support is not required
+ * @speed_bin_corner_band_offset: The device tree property array offset for the
+ * corner band count corresponding to the selected speed
+ * bin
+ * @pd_bypass_mask: Bit mask of power domains associated with this CPR3
+ * regulator
+ * @dynamic_floor_corner: Index identifying the voltage corner for the CPR3
+ * regulator whose last_volt value should be used as the
+ * global CPR floor voltage if all of the power domains
+ * associated with this CPR3 regulator are bypassed
+ * @uses_dynamic_floor: Boolean flag indicating that dynamic_floor_corner should
+ * be utilized for the CPR3 regulator
+ * @current_corner: Index identifying the currently selected voltage corner
+ * for the CPR3 regulator or less than 0 if no corner has
+ * been requested
+ * @last_closed_loop_corner: Index identifying the last voltage corner for the
+ * CPR3 regulator which was configured when operating in
+ * CPR closed-loop mode or less than 0 if no corner has
+ * been requested. CPR registers are only written to when
+ * using closed-loop mode.
+ * @aggregated: Boolean flag indicating that this CPR3 regulator
+ * participated in the last aggregation event
+ * @debug_corner: Index identifying voltage corner used for displaying
+ * corner configuration values in debugfs
+ * @vreg_enabled: Boolean defining the enable state of the CPR3
+ * regulator's regulator within the regulator framework.
+ * @aging_allowed: Boolean defining if CPR aging adjustments are allowed
+ * for this CPR3 regulator given the fuse combo of the
+ * device
+ * @aging_allow_open_loop_adj: Boolean defining if the open-loop voltage of each
+ * corner of this regulator should be adjusted as a result
+ * of an aging measurement. This flag can be set to false
+ * when the open-loop voltage adjustments have been
+ * specified such that they include the maximum possible
+ * aging adjustment. This flag is only used if
+ * aging_allowed == true.
+ * @aging_corner: The corner that should be configured for this regulator
+ * when an aging measurement is performed.
+ * @aging_max_adjust_volt: The maximum aging voltage margin in microvolts that
+ * may be added to the target quotients of this regulator.
+ * A value of 0 may be specified if this regulator does not
+ * require any aging adjustment.
+ * @allow_core_count_adj: Core count adjustments are allowed for this regulator.
+ * @allow_temp_adj: Temperature based adjustments are allowed for this
+ * regulator.
+ * @max_core_count: Maximum number of cores considered for core count
+ * adjustment logic.
+ * @allow_boost: Voltage boost allowed for this regulator.
+ *
+ * This structure contains both configuration and runtime state data. The
+ * elements current_corner, last_closed_loop_corner, aggregated, debug_corner,
+ * and vreg_enabled are state variables.
+ */
+struct cpr3_regulator {
+ struct device_node *of_node;
+ struct cpr3_thread *thread;
+ const char *name;
+ struct regulator_desc rdesc;
+ struct regulator_dev *rdev;
+ struct regulator *mem_acc_regulator;
+ struct cpr3_corner *corner;
+ int corner_count;
+ struct cprh_corner_band *corner_band;
+ struct cpr4_reg_data *cpr4_regulator_data;
+ struct cpr3_reg_data *cpr3_regulator_data;
+ u32 corner_band_count;
+
+ void *platform_fuses;
+ int speed_bin_fuse;
+ int speed_bins_supported;
+ int cpr_rev_fuse;
+ int part_type;
+ int part_type_supported;
+ int fuse_combo;
+ int fuse_combos_supported;
+ int fuse_corner_count;
+ int *fuse_corner_map;
+ int fuse_combo_corner_sum;
+ int fuse_combo_offset;
+ int speed_bin_corner_sum;
+ int speed_bin_offset;
+ int fuse_combo_corner_band_sum;
+ int fuse_combo_corner_band_offset;
+ int speed_bin_corner_band_sum;
+ int speed_bin_corner_band_offset;
+ u32 pd_bypass_mask;
+ int dynamic_floor_corner;
+ bool uses_dynamic_floor;
+
+ int current_corner;
+ int last_closed_loop_corner;
+ bool aggregated;
+ int debug_corner;
+ bool vreg_enabled;
+
+ bool aging_allowed;
+ bool aging_allow_open_loop_adj;
+ int aging_corner;
+ int aging_max_adjust_volt;
+
+ bool allow_core_count_adj;
+ bool allow_temp_adj;
+ int max_core_count;
+ bool allow_boost;
+};
+
+/**
+ * struct cpr3_thread - CPR3 hardware thread data structure
+ * @thread_id: Hardware thread ID
+ * @of_node: Device node associated with the device tree child node
+ * of this CPR3 thread
+ * @ctrl: Pointer to the CPR3 controller which manages this thread
+ * @vreg: Array of CPR3 regulators handled by the CPR3 thread
+ * @vreg_count: Number of elements in the vreg array
+ * @aggr_corner: CPR corner containing the in process aggregated voltage
+ * and target quotient configurations which will be applied
+ * @last_closed_loop_aggr_corner: CPR corner containing the most recent
+ * configurations which were written into hardware
+ * registers when operating in closed loop mode (i.e. with
+ * CPR enabled)
+ * @consecutive_up: The number of consecutive CPR step up events needed to
+ * to trigger an up interrupt
+ * @consecutive_down: The number of consecutive CPR step down events needed to
+ * to trigger a down interrupt
+ * @up_threshold: The number CPR error steps required to generate an up
+ * event
+ * @down_threshold: The number CPR error steps required to generate a down
+ * event
+ *
+ * This structure contains both configuration and runtime state data. The
+ * elements aggr_corner and last_closed_loop_aggr_corner are state variables.
+ */
+struct cpr3_thread {
+ u32 thread_id;
+ struct device_node *of_node;
+ struct cpr3_controller *ctrl;
+ struct cpr3_regulator *vreg;
+ int vreg_count;
+ struct cpr3_corner aggr_corner;
+ struct cpr3_corner last_closed_loop_aggr_corner;
+
+ u32 consecutive_up;
+ u32 consecutive_down;
+ u32 up_threshold;
+ u32 down_threshold;
+};
+
+/* Per CPR controller data */
+/**
+ * enum cpr3_mem_acc_corners - Constants which define the number of mem-acc
+ * regulator corners available in the mem-acc corner map array.
+ * %CPR3_MEM_ACC_LOW_CORNER: Index in mem-acc corner map array mapping to the
+ * mem-acc regulator corner
+ * to be used for low voltage vdd supply
+ * %CPR3_MEM_ACC_HIGH_CORNER: Index in mem-acc corner map array mapping to the
+ * mem-acc regulator corner to be used for high
+ * voltage vdd supply
+ * %CPR3_MEM_ACC_CORNERS: Number of elements in the mem-acc corner map
+ * array
+ */
+enum cpr3_mem_acc_corners {
+ CPR3_MEM_ACC_LOW_CORNER = 0,
+ CPR3_MEM_ACC_HIGH_CORNER = 1,
+ CPR3_MEM_ACC_CORNERS = 2,
+};
+
+/**
+ * enum cpr3_count_mode - CPR3 controller count mode which defines the
+ * method that CPR sensor data is acquired
+ * %CPR3_COUNT_MODE_ALL_AT_ONCE_MIN: Capture all CPR sensor readings
+ * simultaneously and report the minimum
+ * value seen in successive measurements
+ * %CPR3_COUNT_MODE_ALL_AT_ONCE_MAX: Capture all CPR sensor readings
+ * simultaneously and report the maximum
+ * value seen in successive measurements
+ * %CPR3_COUNT_MODE_STAGGERED: Read one sensor at a time in a
+ * sequential fashion
+ * %CPR3_COUNT_MODE_ALL_AT_ONCE_AGE: Capture all CPR aging sensor readings
+ * simultaneously.
+ */
+enum cpr3_count_mode {
+ CPR3_COUNT_MODE_ALL_AT_ONCE_MIN = 0,
+ CPR3_COUNT_MODE_ALL_AT_ONCE_MAX = 1,
+ CPR3_COUNT_MODE_STAGGERED = 2,
+ CPR3_COUNT_MODE_ALL_AT_ONCE_AGE = 3,
+};
+
+/**
+ * enum cpr_controller_type - supported CPR controller hardware types
+ * %CPR_CTRL_TYPE_CPR3: HW has CPR3 controller
+ * %CPR_CTRL_TYPE_CPR4: HW has CPR4 controller
+ */
+enum cpr_controller_type {
+ CPR_CTRL_TYPE_CPR3,
+ CPR_CTRL_TYPE_CPR4,
+};
+
+/**
+ * cpr_setting - supported CPR global settings
+ * %CPR_DEFAULT: default mode from dts will be used
+ * %CPR_DISABLED: ceiling voltage will be used for all the corners
+ * %CPR_OPEN_LOOP_EN: CPR will work in OL
+ * %CPR_CLOSED_LOOP_EN: CPR will work in CL, if supported
+ */
+enum cpr_setting {
+ CPR_DEFAULT = 0,
+ CPR_DISABLED = 1,
+ CPR_OPEN_LOOP_EN = 2,
+ CPR_CLOSED_LOOP_EN = 3,
+};
+
+/**
+ * struct cpr3_aging_sensor_info - CPR3 aging sensor information
+ * @sensor_id The index of the CPR3 sensor to be used in the aging
+ * measurement.
+ * @ro_scale The CPR ring oscillator (RO) scaling factor for the
+ * aging sensor with units of QUOT/V.
+ * @init_quot_diff: The fused quotient difference between aged and un-aged
+ * paths that was measured at manufacturing time.
+ * @measured_quot_diff: The quotient difference measured at runtime.
+ * @bypass_mask: Bit mask of the CPR sensors that must be bypassed during
+ * the aging measurement for this sensor
+ *
+ * This structure contains both configuration and runtime state data. The
+ * element measured_quot_diff is a state variable.
+ */
+struct cpr3_aging_sensor_info {
+ u32 sensor_id;
+ u32 ro_scale;
+ int init_quot_diff;
+ int measured_quot_diff;
+ u32 bypass_mask[CPR3_MAX_SENSOR_COUNT / 32];
+};
+
+/**
+ * struct cpr3_reg_info - Register information data structure
+ * @name: Register name
+ * @addr: Register physical address
+ * @value: Register content
+ * @virt_addr: Register virtual address
+ *
+ * This data structure is used to dump some critical register contents
+ * when the device crashes due to a kernel panic.
+ */
+struct cpr3_reg_info {
+ const char *name;
+ u32 addr;
+ u32 value;
+ void __iomem *virt_addr;
+};
+
+/**
+ * struct cpr3_panic_regs_info - Data structure to dump critical register
+ * contents.
+ * @reg_count: Number of elements in the regs array
+ * @regs: Array of critical registers information
+ *
+ * This data structure is used to dump critical register contents when
+ * the device crashes due to a kernel panic.
+ */
+struct cpr3_panic_regs_info {
+ int reg_count;
+ struct cpr3_reg_info *regs;
+};
+
+/**
+ * struct cpr3_controller - CPR3 controller data structure
+ * @dev: Device pointer for the CPR3 controller device
+ * @name: Unique name for the CPR3 controller
+ * @ctrl_id: Controller ID corresponding to the VDD supply number
+ * that this CPR3 controller manages.
+ * @cpr_ctrl_base: Virtual address of the CPR3 controller base register
+ * @fuse_base: Virtual address of fuse row 0
+ * @aging_possible_reg: Virtual address of an optional platform-specific
+ * register that must be ready to determine if it is
+ * possible to perform an aging measurement.
+ * @list: list head used in a global cpr3-regulator list so that
+ * cpr3-regulator structs can be found easily in RAM dumps
+ * @thread: Array of CPR3 threads managed by the CPR3 controller
+ * @thread_count: Number of elements in the thread array
+ * @sensor_owner: Array of thread IDs indicating which thread owns a given
+ * CPR sensor
+ * @sensor_count: The number of CPR sensors found on the CPR loop managed
+ * by this CPR controller. Must be equal to the number of
+ * elements in the sensor_owner array
+ * @soc_revision: Revision number of the SoC. This may be unused by
+ * platforms that do not have different behavior for
+ * different SoC revisions.
+ * @lock: Mutex lock used to ensure mutual exclusion between
+ * all of the threads associated with the controller
+ * @vdd_regulator: Pointer to the VDD supply regulator which this CPR3
+ * controller manages
+ * @system_regulator: Pointer to the optional system-supply regulator upon
+ * which the VDD supply regulator depends.
+ * @mem_acc_regulator: Pointer to the optional mem-acc supply regulator used
+ * to manage memory circuitry settings based upon the
+ * VDD supply output voltage.
+ * @vdd_limit_regulator: Pointer to the VDD supply limit regulator which is used
+ * for hardware closed-loop in order specify ceiling and
+ * floor voltage limits (platform specific)
+ * @system_supply_max_volt: Voltage in microvolts which corresponds to the
+ * absolute ceiling voltage of the system-supply
+ * @mem_acc_threshold_volt: mem-acc threshold voltage in microvolts
+ * @mem_acc_corner_map: mem-acc regulator corners mapping to low and high
+ * voltage mem-acc settings for the memories powered by
+ * this CPR3 controller and its associated CPR3 regulators
+ * @mem_acc_crossover_volt: Voltage in microvolts corresponding to the voltage
+ * that the VDD supply must be set to while a MEM ACC
+ * switch is in progress. This element must be initialized
+ * for CPRh controllers when a MEM ACC threshold voltage is
+ * defined.
+ * @core_clk: Pointer to the CPR3 controller core clock
+ * @iface_clk: Pointer to the CPR3 interface clock (platform specific)
+ * @bus_clk: Pointer to the CPR3 bus clock (platform specific)
+ * @irq: CPR interrupt number
+ * @irq_affinity_mask: The cpumask for the CPUs which the CPR interrupt should
+ * have affinity for
+ * @cpu_hotplug_notifier: CPU hotplug notifier used to reset IRQ affinity when a
+ * CPU is brought back online
+ * @ceiling_irq: Interrupt number for the interrupt that is triggered
+ * when hardware closed-loop attempts to exceed the ceiling
+ * voltage
+ * @apm: Handle to the array power mux (APM)
+ * @apm_threshold_volt: Voltage in microvolts which defines the threshold
+ * voltage to determine the APM supply selection for
+ * each corner
+ * @apm_crossover_volt: Voltage in microvolts corresponding to the voltage that
+ * the VDD supply must be set to while an APM switch is in
+ * progress. This element must be initialized for CPRh
+ * controllers when an APM threshold voltage is defined
+ * @apm_adj_volt: Minimum difference between APM threshold voltage and
+ * open-loop voltage which allows the APM threshold voltage
+ * to be used as a ceiling
+ * @apm_high_supply: APM supply to configure if VDD voltage is greater than
+ * or equal to the APM threshold voltage
+ * @apm_low_supply: APM supply to configure if the VDD voltage is less than
+ * the APM threshold voltage
+ * @base_volt: Minimum voltage in microvolts supported by the VDD
+ * supply managed by this CPR controller
+ * @corner_switch_delay_time: The delay time in nanoseconds used by the CPR
+ * controller to wait for voltage settling before
+ * acknowledging the OSM block after corner changes
+ * @cpr_clock_rate: CPR reference clock frequency in Hz.
+ * @sensor_time: The time in nanoseconds that each sensor takes to
+ * perform a measurement.
+ * @loop_time: The time in nanoseconds between consecutive CPR
+ * measurements.
+ * @up_down_delay_time: The time to delay in nanoseconds between consecutive CPR
+ * measurements when the last measurement recommended
+ * increasing or decreasing the vdd-supply voltage.
+ * (platform specific)
+ * @idle_clocks: Number of CPR reference clock ticks that the CPR
+ * controller waits in transitional states.
+ * @step_quot_init_min: The default minimum CPR step quotient value. The step
+ * quotient is the number of additional ring oscillator
+ * ticks observed when increasing one step in vdd-supply
+ * output voltage.
+ * @step_quot_init_max: The default maximum CPR step quotient value.
+ * @step_volt: Step size in microvolts between available set points
+ * of the VDD supply
+ * @down_error_step_limit: CPR4 hardware closed-loop down error step limit which
+ * defines the maximum number of VDD supply regulator steps
+ * that the voltage may be reduced as the result of a
+ * single CPR measurement.
+ * @up_error_step_limit: CPR4 hardware closed-loop up error step limit which
+ * defines the maximum number of VDD supply regulator steps
+ * that the voltage may be increased as the result of a
+ * single CPR measurement.
+ * @count_mode: CPR controller count mode
+ * @count_repeat: Number of times to perform consecutive sensor
+ * measurements when using all-at-once count modes.
+ * @proc_clock_throttle: Defines the processor clock frequency throttling
+ * register value to use. This can be used to reduce the
+ * clock frequency when a power domain exits a low power
+ * mode until CPR settles at a new voltage.
+ * (platform specific)
+ * @cpr_allowed_hw: Boolean which indicates if closed-loop CPR operation is
+ * permitted for a given chip based upon hardware fuse
+ * values
+ * @cpr_allowed_sw: Boolean which indicates if closed-loop CPR operation is
+ * permitted based upon software policies
+ * @supports_hw_closed_loop: Boolean which indicates if this CPR3/4 controller
+ * physically supports hardware closed-loop CPR operation
+ * @use_hw_closed_loop: Boolean which indicates that this controller will be
+ * using hardware closed-loop operation in place of
+ * software closed-loop operation.
+ * @ctrl_type: CPR controller type
+ * @saw_use_unit_mV: Boolean which indicates the unit used in SAW PVC
+ * interface is mV.
+ * @aggr_corner: CPR corner containing the most recently aggregated
+ * voltage configurations which are being used currently
+ * @cpr_enabled: Boolean which indicates that the CPR controller is
+ * enabled and operating in closed-loop mode. CPR clocks
+ * have been prepared and enabled whenever this flag is
+ * true.
+ * @last_corner_was_closed_loop: Boolean indicating if the last known corners
+ * were updated during closed loop operation.
+ * @cpr_suspended: Boolean which indicates that CPR has been temporarily
+ * disabled while enterring system suspend.
+ * @debugfs: Pointer to the debugfs directory of this CPR3 controller
+ * @aging_ref_volt: Reference voltage in microvolts to configure when
+ * performing CPR aging measurements.
+ * @aging_vdd_mode: vdd-supply regulator mode to configure before performing
+ * a CPR aging measurement. It should be one of
+ * REGULATOR_MODE_*.
+ * @aging_complete_vdd_mode: vdd-supply regulator mode to configure after
+ * performing a CPR aging measurement. It should be one of
+ * REGULATOR_MODE_*.
+ * @aging_ref_adjust_volt: The reference aging voltage margin in microvolts that
+ * should be added to the target quotients of the
+ * regulators managed by this controller after derating.
+ * @aging_required: Flag which indicates that a CPR aging measurement still
+ * needs to be performed for this CPR3 controller.
+ * @aging_succeeded: Flag which indicates that a CPR aging measurement has
+ * completed successfully.
+ * @aging_failed: Flag which indicates that a CPR aging measurement has
+ * failed to complete successfully.
+ * @aging_sensor: Array of CPR3 aging sensors which are used to perform
+ * aging measurements at a runtime.
+ * @aging_sensor_count: Number of elements in the aging_sensor array
+ * @aging_possible_mask: Optional bitmask used to mask off the
+ * aging_possible_reg register.
+ * @aging_possible_val: Optional value that the masked aging_possible_reg
+ * register must have in order for a CPR aging measurement
+ * to be possible.
+ * @step_quot_fixed: Fixed step quotient value used for target quotient
+ * adjustment if use_dynamic_step_quot is not set.
+ * This parameter is only relevant for CPR4 controllers
+ * when using the per-online-core or per-temperature
+ * adjustments.
+ * @initial_temp_band: Temperature band used for calculation of base-line
+ * target quotients (fused).
+ * @use_dynamic_step_quot: Boolean value which indicates that margin adjustment
+ * of target quotient will be based on the step quotient
+ * calculated dynamically in hardware for each RO.
+ * @allow_core_count_adj: Core count adjustments are allowed for this controller
+ * @allow_temp_adj: Temperature based adjustments are allowed for
+ * this controller
+ * @allow_boost: Voltage boost allowed for this controller.
+ * @temp_band_count: Number of temperature bands used for temperature based
+ * adjustment logic
+ * @temp_points: Array of temperature points in decidegrees Celsius used
+ * to specify the ranges for selected temperature bands.
+ * The array must have (temp_band_count - 1) elements
+ * allocated.
+ * @temp_sensor_id_start: Start ID of temperature sensors used for temperature
+ * based adjustments.
+ * @temp_sensor_id_end: End ID of temperature sensors used for temperature
+ * based adjustments.
+ * @voltage_settling_time: The time in nanoseconds that it takes for the
+ * VDD supply voltage to settle after being increased or
+ * decreased by step_volt microvolts which is used when
+ * SDELTA voltage margin adjustments are applied.
+ * @cpr_global_setting: Global setting for this CPR controller
+ * @panic_regs_info: Array of panic registers information which provides the
+ * list of registers to dump when the device crashes.
+ * @panic_notifier: Notifier block registered to global panic notifier list.
+ *
+ * This structure contains both configuration and runtime state data. The
+ * elements cpr_allowed_sw, use_hw_closed_loop, aggr_corner, cpr_enabled,
+ * last_corner_was_closed_loop, cpr_suspended, aging_ref_adjust_volt,
+ * aging_required, aging_succeeded, and aging_failed are state variables.
+ *
+ * The apm* elements do not need to be initialized if the VDD supply managed by
+ * the CPR3 controller does not utilize an APM.
+ *
+ * The elements step_quot_fixed, initial_temp_band, allow_core_count_adj,
+ * allow_temp_adj and temp* need to be initialized for CPR4 controllers which
+ * are using per-online-core or per-temperature adjustments.
+ */
+struct cpr3_controller {
+ struct device *dev;
+ const char *name;
+ int ctrl_id;
+ void __iomem *cpr_ctrl_base;
+ void __iomem *fuse_base;
+ void __iomem *aging_possible_reg;
+ struct list_head list;
+ struct cpr3_thread *thread;
+ int thread_count;
+ u8 *sensor_owner;
+ int sensor_count;
+ int soc_revision;
+ struct mutex lock;
+ struct regulator *vdd_regulator;
+ struct regulator *system_regulator;
+ struct regulator *mem_acc_regulator;
+ struct regulator *vdd_limit_regulator;
+ int system_supply_max_volt;
+ int mem_acc_threshold_volt;
+ int mem_acc_corner_map[CPR3_MEM_ACC_CORNERS];
+ int mem_acc_crossover_volt;
+ struct clk *core_clk;
+ struct clk *iface_clk;
+ struct clk *bus_clk;
+ int irq;
+ struct cpumask irq_affinity_mask;
+ struct notifier_block cpu_hotplug_notifier;
+ int ceiling_irq;
+ struct msm_apm_ctrl_dev *apm;
+ int apm_threshold_volt;
+ int apm_crossover_volt;
+ int apm_adj_volt;
+ enum msm_apm_supply apm_high_supply;
+ enum msm_apm_supply apm_low_supply;
+ int base_volt;
+ u32 corner_switch_delay_time;
+ u32 cpr_clock_rate;
+ u32 sensor_time;
+ u32 loop_time;
+ u32 up_down_delay_time;
+ u32 idle_clocks;
+ u32 step_quot_init_min;
+ u32 step_quot_init_max;
+ int step_volt;
+ u32 down_error_step_limit;
+ u32 up_error_step_limit;
+ enum cpr3_count_mode count_mode;
+ u32 count_repeat;
+ u32 proc_clock_throttle;
+ bool cpr_allowed_hw;
+ bool cpr_allowed_sw;
+ bool supports_hw_closed_loop;
+ bool use_hw_closed_loop;
+ enum cpr_controller_type ctrl_type;
+ bool saw_use_unit_mV;
+ struct cpr3_corner aggr_corner;
+ bool cpr_enabled;
+ bool last_corner_was_closed_loop;
+ bool cpr_suspended;
+ struct dentry *debugfs;
+
+ int aging_ref_volt;
+ unsigned int aging_vdd_mode;
+ unsigned int aging_complete_vdd_mode;
+ int aging_ref_adjust_volt;
+ bool aging_required;
+ bool aging_succeeded;
+ bool aging_failed;
+ struct cpr3_aging_sensor_info *aging_sensor;
+ int aging_sensor_count;
+ u32 cur_sensor_state;
+ u32 aging_possible_mask;
+ u32 aging_possible_val;
+
+ u32 step_quot_fixed;
+ u32 initial_temp_band;
+ bool use_dynamic_step_quot;
+ bool allow_core_count_adj;
+ bool allow_temp_adj;
+ bool allow_boost;
+ int temp_band_count;
+ int *temp_points;
+ u32 temp_sensor_id_start;
+ u32 temp_sensor_id_end;
+ u32 voltage_settling_time;
+ enum cpr_setting cpr_global_setting;
+ struct cpr3_panic_regs_info *panic_regs_info;
+ struct notifier_block panic_notifier;
+};
+
+/* Used for rounding voltages to the closest physically available set point. */
+#define CPR3_ROUND(n, d) (DIV_ROUND_UP(n, d) * (d))
+
+#define cpr3_err(cpr3_thread, message, ...) \
+ pr_err("%s: " message, (cpr3_thread)->name, ##__VA_ARGS__)
+#define cpr3_info(cpr3_thread, message, ...) \
+ pr_info("%s: " message, (cpr3_thread)->name, ##__VA_ARGS__)
+#define cpr3_debug(cpr3_thread, message, ...) \
+ pr_debug("%s: " message, (cpr3_thread)->name, ##__VA_ARGS__)
+
+/*
+ * Offset subtracted from voltage corner values passed in from the regulator
+ * framework in order to get internal voltage corner values. This is needed
+ * since the regulator framework treats 0 as an error value at regulator
+ * registration time.
+ */
+#define CPR3_CORNER_OFFSET 1
+
+#ifdef CONFIG_REGULATOR_CPR3
+
+int cpr3_regulator_register(struct platform_device *pdev,
+ struct cpr3_controller *ctrl);
+int cpr3_open_loop_regulator_register(struct platform_device *pdev,
+ struct cpr3_controller *ctrl);
+int cpr3_regulator_unregister(struct cpr3_controller *ctrl);
+int cpr3_open_loop_regulator_unregister(struct cpr3_controller *ctrl);
+int cpr3_regulator_suspend(struct cpr3_controller *ctrl);
+int cpr3_regulator_resume(struct cpr3_controller *ctrl);
+
+int cpr3_allocate_threads(struct cpr3_controller *ctrl, u32 min_thread_id,
+ u32 max_thread_id);
+int cpr3_map_fuse_base(struct cpr3_controller *ctrl,
+ struct platform_device *pdev);
+int cpr3_read_tcsr_setting(struct cpr3_controller *ctrl,
+ struct platform_device *pdev, u8 start, u8 end);
+int cpr3_read_fuse_param(void __iomem *fuse_base_addr,
+ const struct cpr3_fuse_param *param, u64 *param_value);
+int cpr3_convert_open_loop_voltage_fuse(int ref_volt, int step_volt, u32 fuse,
+ int fuse_len);
+u64 cpr3_interpolate(u64 x1, u64 y1, u64 x2, u64 y2, u64 x);
+int cpr3_parse_array_property(struct cpr3_regulator *vreg,
+ const char *prop_name, int tuple_size, u32 *out);
+int cpr3_parse_corner_array_property(struct cpr3_regulator *vreg,
+ const char *prop_name, int tuple_size, u32 *out);
+int cpr3_parse_corner_band_array_property(struct cpr3_regulator *vreg,
+ const char *prop_name, int tuple_size, u32 *out);
+int cpr3_parse_common_corner_data(struct cpr3_regulator *vreg);
+int cpr3_parse_thread_u32(struct cpr3_thread *thread, const char *propname,
+ u32 *out_value, u32 value_min, u32 value_max);
+int cpr3_parse_ctrl_u32(struct cpr3_controller *ctrl, const char *propname,
+ u32 *out_value, u32 value_min, u32 value_max);
+int cpr3_parse_common_thread_data(struct cpr3_thread *thread);
+int cpr3_parse_common_ctrl_data(struct cpr3_controller *ctrl);
+int cpr3_parse_open_loop_common_ctrl_data(struct cpr3_controller *ctrl);
+int cpr3_limit_open_loop_voltages(struct cpr3_regulator *vreg);
+void cpr3_open_loop_voltage_as_ceiling(struct cpr3_regulator *vreg);
+int cpr3_limit_floor_voltages(struct cpr3_regulator *vreg);
+void cpr3_print_quots(struct cpr3_regulator *vreg);
+int cpr3_determine_part_type(struct cpr3_regulator *vreg, int fuse_volt);
+int cpr3_determine_temp_base_open_loop_correction(struct cpr3_regulator *vreg,
+ int *fuse_volt);
+int cpr3_adjust_fused_open_loop_voltages(struct cpr3_regulator *vreg,
+ int *fuse_volt);
+int cpr3_adjust_open_loop_voltages(struct cpr3_regulator *vreg);
+int cpr3_quot_adjustment(int ro_scale, int volt_adjust);
+int cpr3_voltage_adjustment(int ro_scale, int quot_adjust);
+int cpr3_parse_closed_loop_voltage_adjustments(struct cpr3_regulator *vreg,
+ u64 *ro_sel, int *volt_adjust,
+ int *volt_adjust_fuse, int *ro_scale);
+int cpr4_parse_core_count_temp_voltage_adj(struct cpr3_regulator *vreg,
+ bool use_corner_band);
+int cpr3_apm_init(struct cpr3_controller *ctrl);
+int cpr3_mem_acc_init(struct cpr3_regulator *vreg);
+void cprh_adjust_voltages_for_apm(struct cpr3_regulator *vreg);
+void cprh_adjust_voltages_for_mem_acc(struct cpr3_regulator *vreg);
+int cpr3_adjust_target_quotients(struct cpr3_regulator *vreg,
+ int *fuse_volt_adjust);
+int cpr3_handle_temp_open_loop_adjustment(struct cpr3_controller *ctrl,
+ bool is_cold);
+int cpr3_get_cold_temp_threshold(struct cpr3_regulator *vreg, int *cold_temp);
+bool cpr3_can_adjust_cold_temp(struct cpr3_regulator *vreg);
+
+#else
+
+static inline int cpr3_regulator_register(struct platform_device *pdev,
+ struct cpr3_controller *ctrl)
+{
+ return -ENXIO;
+}
+
+static inline int
+cpr3_open_loop_regulator_register(struct platform_device *pdev,
+ struct cpr3_controller *ctrl);
+{
+ return -ENXIO;
+}
+
+static inline int cpr3_regulator_unregister(struct cpr3_controller *ctrl)
+{
+ return -ENXIO;
+}
+
+static inline int
+cpr3_open_loop_regulator_unregister(struct cpr3_controller *ctrl)
+{
+ return -ENXIO;
+}
+
+static inline int cpr3_regulator_suspend(struct cpr3_controller *ctrl)
+{
+ return -ENXIO;
+}
+
+static inline int cpr3_regulator_resume(struct cpr3_controller *ctrl)
+{
+ return -ENXIO;
+}
+
+static inline int cpr3_get_thread_name(struct cpr3_thread *thread,
+ struct device_node *thread_node)
+{
+ return -EPERM;
+}
+
+static inline int cpr3_allocate_threads(struct cpr3_controller *ctrl,
+ u32 min_thread_id, u32 max_thread_id)
+{
+ return -EPERM;
+}
+
+static inline int cpr3_map_fuse_base(struct cpr3_controller *ctrl,
+ struct platform_device *pdev)
+{
+ return -ENXIO;
+}
+
+static inline int cpr3_read_tcsr_setting(struct cpr3_controller *ctrl,
+ struct platform_device *pdev, u8 start, u8 end)
+{
+ return 0;
+}
+
+static inline int cpr3_read_fuse_param(void __iomem *fuse_base_addr,
+ const struct cpr3_fuse_param *param, u64 *param_value)
+{
+ return -EPERM;
+}
+
+static inline int cpr3_convert_open_loop_voltage_fuse(int ref_volt,
+ int step_volt, u32 fuse, int fuse_len)
+{
+ return -EPERM;
+}
+
+static inline u64 cpr3_interpolate(u64 x1, u64 y1, u64 x2, u64 y2, u64 x)
+{
+ return 0;
+}
+
+static inline int cpr3_parse_array_property(struct cpr3_regulator *vreg,
+ const char *prop_name, int tuple_size, u32 *out)
+{
+ return -EPERM;
+}
+
+static inline int cpr3_parse_corner_array_property(struct cpr3_regulator *vreg,
+ const char *prop_name, int tuple_size, u32 *out)
+{
+ return -EPERM;
+}
+
+static inline int cpr3_parse_corner_band_array_property(
+ struct cpr3_regulator *vreg, const char *prop_name,
+ int tuple_size, u32 *out)
+{
+ return -EPERM;
+}
+
+static inline int cpr3_parse_common_corner_data(struct cpr3_regulator *vreg)
+{
+ return -EPERM;
+}
+
+static inline int cpr3_parse_thread_u32(struct cpr3_thread *thread,
+ const char *propname, u32 *out_value, u32 value_min,
+ u32 value_max)
+{
+ return -EPERM;
+}
+
+static inline int cpr3_parse_ctrl_u32(struct cpr3_controller *ctrl,
+ const char *propname, u32 *out_value, u32 value_min,
+ u32 value_max)
+{
+ return -EPERM;
+}
+
+static inline int cpr3_parse_common_thread_data(struct cpr3_thread *thread)
+{
+ return -EPERM;
+}
+
+static inline int cpr3_parse_common_ctrl_data(struct cpr3_controller *ctrl)
+{
+ return -EPERM;
+}
+
+static inline int
+cpr3_parse_open_loop_common_ctrl_data(struct cpr3_controller *ctrl)
+{
+ return -EPERM;
+}
+
+static inline int cpr3_limit_open_loop_voltages(struct cpr3_regulator *vreg)
+{
+ return -EPERM;
+}
+
+static inline void cpr3_open_loop_voltage_as_ceiling(
+ struct cpr3_regulator *vreg)
+{
+ return;
+}
+
+static inline int cpr3_limit_floor_voltages(struct cpr3_regulator *vreg)
+{
+ return -EPERM;
+}
+
+static inline void cpr3_print_quots(struct cpr3_regulator *vreg)
+{
+ return;
+}
+
+static inline int
+cpr3_determine_part_type(struct cpr3_regulator *vreg, int fuse_volt)
+{
+ return -EPERM;
+}
+
+static inline int
+cpr3_determine_temp_base_open_loop_correction(struct cpr3_regulator *vreg,
+ int *fuse_volt)
+{
+ return -EPERM;
+}
+
+static inline int cpr3_adjust_fused_open_loop_voltages(
+ struct cpr3_regulator *vreg, int *fuse_volt)
+{
+ return -EPERM;
+}
+
+static inline int cpr3_adjust_open_loop_voltages(struct cpr3_regulator *vreg)
+{
+ return -EPERM;
+}
+
+static inline int cpr3_quot_adjustment(int ro_scale, int volt_adjust)
+{
+ return 0;
+}
+
+static inline int cpr3_voltage_adjustment(int ro_scale, int quot_adjust)
+{
+ return 0;
+}
+
+static inline int cpr3_parse_closed_loop_voltage_adjustments(
+ struct cpr3_regulator *vreg, u64 *ro_sel,
+ int *volt_adjust, int *volt_adjust_fuse, int *ro_scale)
+{
+ return 0;
+}
+
+static inline int cpr4_parse_core_count_temp_voltage_adj(
+ struct cpr3_regulator *vreg, bool use_corner_band)
+{
+ return 0;
+}
+
+static inline int cpr3_apm_init(struct cpr3_controller *ctrl)
+{
+ return 0;
+}
+
+static inline int cpr3_mem_acc_init(struct cpr3_regulator *vreg)
+{
+ return 0;
+}
+
+static inline void cprh_adjust_voltages_for_apm(struct cpr3_regulator *vreg)
+{
+}
+
+static inline void cprh_adjust_voltages_for_mem_acc(struct cpr3_regulator *vreg)
+{
+}
+
+static inline int cpr3_adjust_target_quotients(struct cpr3_regulator *vreg,
+ int *fuse_volt_adjust)
+{
+ return 0;
+}
+
+static inline int
+cpr3_handle_temp_open_loop_adjustment(struct cpr3_controller *ctrl,
+ bool is_cold)
+{
+ return 0;
+}
+
+static inline bool
+cpr3_can_adjust_cold_temp(struct cpr3_regulator *vreg)
+{
+ return false;
+}
+
+static inline int
+cpr3_get_cold_temp_threshold(struct cpr3_regulator *vreg, int *cold_temp)
+{
+ return 0;
+}
+#endif /* CONFIG_REGULATOR_CPR3 */
+
+#endif /* __REGULATOR_CPR_REGULATOR_H__ */
--- /dev/null
+++ b/drivers/regulator/cpr3-util.c
@@ -0,0 +1,2750 @@
+/*
+ * Copyright (c) 2015-2017, The Linux Foundation. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 and
+ * only version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ */
+
+/*
+ * This file contains utility functions to be used by platform specific CPR3
+ * regulator drivers.
+ */
+
+#define pr_fmt(fmt) "%s: " fmt, __func__
+
+#include <linux/cpumask.h>
+#include <linux/device.h>
+#include <linux/io.h>
+#include <linux/kernel.h>
+#include <linux/of.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+#include <linux/types.h>
+
+#include <soc/qcom/socinfo.h>
+
+#include "cpr3-regulator.h"
+
+#define BYTES_PER_FUSE_ROW 8
+#define MAX_FUSE_ROW_BIT 63
+
+#define CPR3_CONSECUTIVE_UP_DOWN_MIN 0
+#define CPR3_CONSECUTIVE_UP_DOWN_MAX 15
+#define CPR3_UP_DOWN_THRESHOLD_MIN 0
+#define CPR3_UP_DOWN_THRESHOLD_MAX 31
+#define CPR3_STEP_QUOT_MIN 0
+#define CPR3_STEP_QUOT_MAX 63
+#define CPR3_IDLE_CLOCKS_MIN 0
+#define CPR3_IDLE_CLOCKS_MAX 31
+
+/* This constant has units of uV/mV so 1000 corresponds to 100%. */
+#define CPR3_AGING_DERATE_UNITY 1000
+
+/**
+ * cpr3_allocate_regulators() - allocate and initialize CPR3 regulators for a
+ * given thread based upon device tree data
+ * @thread: Pointer to the CPR3 thread
+ *
+ * This function allocates the thread->vreg array based upon the number of
+ * device tree regulator subnodes. It also initializes generic elements of each
+ * regulator struct such as name, of_node, and thread.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_allocate_regulators(struct cpr3_thread *thread)
+{
+ struct device_node *node;
+ int i, rc;
+
+ thread->vreg_count = 0;
+
+ for_each_available_child_of_node(thread->of_node, node) {
+ thread->vreg_count++;
+ }
+
+ thread->vreg = devm_kcalloc(thread->ctrl->dev, thread->vreg_count,
+ sizeof(*thread->vreg), GFP_KERNEL);
+ if (!thread->vreg)
+ return -ENOMEM;
+
+ i = 0;
+ for_each_available_child_of_node(thread->of_node, node) {
+ thread->vreg[i].of_node = node;
+ thread->vreg[i].thread = thread;
+
+ rc = of_property_read_string(node, "regulator-name",
+ &thread->vreg[i].name);
+ if (rc) {
+ dev_err(thread->ctrl->dev, "could not find regulator name, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ i++;
+ }
+
+ return 0;
+}
+
+/**
+ * cpr3_allocate_threads() - allocate and initialize CPR3 threads for a given
+ * controller based upon device tree data
+ * @ctrl: Pointer to the CPR3 controller
+ * @min_thread_id: Minimum allowed hardware thread ID for this controller
+ * @max_thread_id: Maximum allowed hardware thread ID for this controller
+ *
+ * This function allocates the ctrl->thread array based upon the number of
+ * device tree thread subnodes. It also initializes generic elements of each
+ * thread struct such as thread_id, of_node, ctrl, and vreg array.
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_allocate_threads(struct cpr3_controller *ctrl, u32 min_thread_id,
+ u32 max_thread_id)
+{
+ struct device *dev = ctrl->dev;
+ struct device_node *thread_node;
+ int i, j, rc;
+
+ ctrl->thread_count = 0;
+
+ for_each_available_child_of_node(dev->of_node, thread_node) {
+ ctrl->thread_count++;
+ }
+
+ ctrl->thread = devm_kcalloc(dev, ctrl->thread_count,
+ sizeof(*ctrl->thread), GFP_KERNEL);
+ if (!ctrl->thread)
+ return -ENOMEM;
+
+ i = 0;
+ for_each_available_child_of_node(dev->of_node, thread_node) {
+ ctrl->thread[i].of_node = thread_node;
+ ctrl->thread[i].ctrl = ctrl;
+
+ rc = of_property_read_u32(thread_node, "qcom,cpr-thread-id",
+ &ctrl->thread[i].thread_id);
+ if (rc) {
+ dev_err(dev, "could not read DT property qcom,cpr-thread-id, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ if (ctrl->thread[i].thread_id < min_thread_id ||
+ ctrl->thread[i].thread_id > max_thread_id) {
+ dev_err(dev, "invalid thread id = %u; not within [%u, %u]\n",
+ ctrl->thread[i].thread_id, min_thread_id,
+ max_thread_id);
+ return -EINVAL;
+ }
+
+ /* Verify that the thread ID is unique for all child nodes. */
+ for (j = 0; j < i; j++) {
+ if (ctrl->thread[j].thread_id
+ == ctrl->thread[i].thread_id) {
+ dev_err(dev, "duplicate thread id = %u found\n",
+ ctrl->thread[i].thread_id);
+ return -EINVAL;
+ }
+ }
+
+ rc = cpr3_allocate_regulators(&ctrl->thread[i]);
+ if (rc)
+ return rc;
+
+ i++;
+ }
+
+ return 0;
+}
+
+/**
+ * cpr3_map_fuse_base() - ioremap the base address of the fuse region
+ * @ctrl: Pointer to the CPR3 controller
+ * @pdev: Platform device pointer for the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_map_fuse_base(struct cpr3_controller *ctrl,
+ struct platform_device *pdev)
+{
+ struct resource *res;
+
+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fuse_base");
+ if (!res || !res->start) {
+ dev_err(&pdev->dev, "fuse base address is missing\n");
+ return -ENXIO;
+ }
+
+ ctrl->fuse_base = devm_ioremap(&pdev->dev, res->start,
+ resource_size(res));
+
+ return 0;
+}
+
+/**
+ * cpr3_read_tcsr_setting - reads the CPR setting bits from TCSR register
+ * @ctrl: Pointer to the CPR3 controller
+ * @pdev: Platform device pointer for the CPR3 controller
+ * @start: start bit in TCSR register
+ * @end: end bit in TCSR register
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_read_tcsr_setting(struct cpr3_controller *ctrl,
+ struct platform_device *pdev, u8 start, u8 end)
+{
+ struct resource *res;
+ void __iomem *tcsr_reg;
+ u32 val;
+
+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
+ "cpr_tcsr_reg");
+ if (!res || !res->start)
+ return 0;
+
+ tcsr_reg = ioremap(res->start, resource_size(res));
+ if (!tcsr_reg) {
+ dev_err(&pdev->dev, "tcsr ioremap failed\n");
+ return 0;
+ }
+
+ val = readl_relaxed(tcsr_reg);
+ val &= GENMASK(end, start);
+ val >>= start;
+
+ switch (val) {
+ case 1:
+ ctrl->cpr_global_setting = CPR_DISABLED;
+ break;
+ case 2:
+ ctrl->cpr_global_setting = CPR_OPEN_LOOP_EN;
+ break;
+ case 3:
+ ctrl->cpr_global_setting = CPR_CLOSED_LOOP_EN;
+ break;
+ default:
+ ctrl->cpr_global_setting = CPR_DEFAULT;
+ }
+
+ iounmap(tcsr_reg);
+
+ return 0;
+}
+
+/**
+ * cpr3_read_fuse_param() - reads a CPR3 fuse parameter out of eFuses
+ * @fuse_base_addr: Virtual memory address of the eFuse base address
+ * @param: Null terminated array of fuse param segments to read
+ * from
+ * @param_value: Output with value read from the eFuses
+ *
+ * This function reads from each of the parameter segments listed in the param
+ * array and concatenates their values together. Reading stops when an element
+ * is reached which has all 0 struct values. The total number of bits specified
+ * for the fuse parameter across all segments must be less than or equal to 64.
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_read_fuse_param(void __iomem *fuse_base_addr,
+ const struct cpr3_fuse_param *param, u64 *param_value)
+{
+ u64 fuse_val, val;
+ int bits;
+ int bits_total = 0;
+
+ *param_value = 0;
+
+ while (param->row || param->bit_start || param->bit_end) {
+ if (param->bit_start > param->bit_end
+ || param->bit_end > MAX_FUSE_ROW_BIT) {
+ pr_err("Invalid fuse parameter segment: row=%u, start=%u, end=%u\n",
+ param->row, param->bit_start, param->bit_end);
+ return -EINVAL;
+ }
+
+ bits = param->bit_end - param->bit_start + 1;
+ if (bits_total + bits > 64) {
+ pr_err("Invalid fuse parameter segments; total bits = %d\n",
+ bits_total + bits);
+ return -EINVAL;
+ }
+
+ fuse_val = readq_relaxed(fuse_base_addr
+ + param->row * BYTES_PER_FUSE_ROW);
+ val = (fuse_val >> param->bit_start) & ((1ULL << bits) - 1);
+ *param_value |= val << bits_total;
+ bits_total += bits;
+
+ param++;
+ }
+
+ return 0;
+}
+
+/**
+ * cpr3_convert_open_loop_voltage_fuse() - converts an open loop voltage fuse
+ * value into an absolute voltage with units of microvolts
+ * @ref_volt: Reference voltage in microvolts
+ * @step_volt: The step size in microvolts of the fuse LSB
+ * @fuse: Open loop voltage fuse value
+ * @fuse_len: The bit length of the fuse value
+ *
+ * The MSB of the fuse parameter corresponds to a sign bit. If it is set, then
+ * the lower bits correspond to the number of steps to go down from the
+ * reference voltage. If it is not set, then the lower bits correspond to the
+ * number of steps to go up from the reference voltage.
+ */
+int cpr3_convert_open_loop_voltage_fuse(int ref_volt, int step_volt, u32 fuse,
+ int fuse_len)
+{
+ int sign, steps;
+
+ sign = (fuse & (1 << (fuse_len - 1))) ? -1 : 1;
+ steps = fuse & ((1 << (fuse_len - 1)) - 1);
+
+ return ref_volt + sign * steps * step_volt;
+}
+
+/**
+ * cpr3_interpolate() - performs linear interpolation
+ * @x1 Lower known x value
+ * @y1 Lower known y value
+ * @x2 Upper known x value
+ * @y2 Upper known y value
+ * @x Intermediate x value
+ *
+ * Returns y where (x, y) falls on the line between (x1, y1) and (x2, y2).
+ * It is required that x1 < x2, y1 <= y2, and x1 <= x <= x2. If these
+ * conditions are not met, then y2 will be returned.
+ */
+u64 cpr3_interpolate(u64 x1, u64 y1, u64 x2, u64 y2, u64 x)
+{
+ u64 temp;
+
+ if (x1 >= x2 || y1 > y2 || x1 > x || x > x2)
+ return y2;
+
+ temp = (x2 - x) * (y2 - y1);
+ do_div(temp, (u32)(x2 - x1));
+
+ return y2 - temp;
+}
+
+/**
+ * cpr3_parse_array_property() - fill an array from a portion of the values
+ * specified for a device tree property
+ * @vreg: Pointer to the CPR3 regulator
+ * @prop_name: The name of the device tree property to read from
+ * @tuple_size: The number of elements in each tuple
+ * @out: Output data array which must be of size tuple_size
+ *
+ * cpr3_parse_common_corner_data() must be called for vreg before this function
+ * is called so that fuse combo and speed bin size elements are initialized.
+ *
+ * Three formats are supported for the device tree property:
+ * 1. Length == tuple_size
+ * (reading begins at index 0)
+ * 2. Length == tuple_size * vreg->fuse_combos_supported
+ * (reading begins at index tuple_size * vreg->fuse_combo)
+ * 3. Length == tuple_size * vreg->speed_bins_supported
+ * (reading begins at index tuple_size * vreg->speed_bin_fuse)
+ *
+ * All other property lengths are treated as errors.
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_parse_array_property(struct cpr3_regulator *vreg,
+ const char *prop_name, int tuple_size, u32 *out)
+{
+ struct device_node *node = vreg->of_node;
+ int len = 0;
+ int i, offset, rc;
+
+ if (!of_find_property(node, prop_name, &len)) {
+ cpr3_err(vreg, "property %s is missing\n", prop_name);
+ return -EINVAL;
+ }
+
+ if (len == tuple_size * sizeof(u32)) {
+ offset = 0;
+ } else if (len == tuple_size * vreg->fuse_combos_supported
+ * sizeof(u32)) {
+ offset = tuple_size * vreg->fuse_combo;
+ } else if (vreg->speed_bins_supported > 0 &&
+ len == tuple_size * vreg->speed_bins_supported * sizeof(u32)) {
+ offset = tuple_size * vreg->speed_bin_fuse;
+ } else {
+ if (vreg->speed_bins_supported > 0)
+ cpr3_err(vreg, "property %s has invalid length=%d, should be %zu, %zu, or %zu\n",
+ prop_name, len,
+ tuple_size * sizeof(u32),
+ tuple_size * vreg->speed_bins_supported
+ * sizeof(u32),
+ tuple_size * vreg->fuse_combos_supported
+ * sizeof(u32));
+ else
+ cpr3_err(vreg, "property %s has invalid length=%d, should be %zu or %zu\n",
+ prop_name, len,
+ tuple_size * sizeof(u32),
+ tuple_size * vreg->fuse_combos_supported
+ * sizeof(u32));
+ return -EINVAL;
+ }
+
+ for (i = 0; i < tuple_size; i++) {
+ rc = of_property_read_u32_index(node, prop_name, offset + i,
+ &out[i]);
+ if (rc) {
+ cpr3_err(vreg, "error reading property %s, rc=%d\n",
+ prop_name, rc);
+ return rc;
+ }
+ }
+
+ return 0;
+}
+
+/**
+ * cpr3_parse_corner_array_property() - fill a per-corner array from a portion
+ * of the values specified for a device tree property
+ * @vreg: Pointer to the CPR3 regulator
+ * @prop_name: The name of the device tree property to read from
+ * @tuple_size: The number of elements in each per-corner tuple
+ * @out: Output data array which must be of size:
+ * tuple_size * vreg->corner_count
+ *
+ * cpr3_parse_common_corner_data() must be called for vreg before this function
+ * is called so that fuse combo and speed bin size elements are initialized.
+ *
+ * Three formats are supported for the device tree property:
+ * 1. Length == tuple_size * vreg->corner_count
+ * (reading begins at index 0)
+ * 2. Length == tuple_size * vreg->fuse_combo_corner_sum
+ * (reading begins at index tuple_size * vreg->fuse_combo_offset)
+ * 3. Length == tuple_size * vreg->speed_bin_corner_sum
+ * (reading begins at index tuple_size * vreg->speed_bin_offset)
+ *
+ * All other property lengths are treated as errors.
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_parse_corner_array_property(struct cpr3_regulator *vreg,
+ const char *prop_name, int tuple_size, u32 *out)
+{
+ struct device_node *node = vreg->of_node;
+ int len = 0;
+ int i, offset, rc;
+
+ if (!of_find_property(node, prop_name, &len)) {
+ cpr3_err(vreg, "property %s is missing\n", prop_name);
+ return -EINVAL;
+ }
+
+ if (len == tuple_size * vreg->corner_count * sizeof(u32)) {
+ offset = 0;
+ } else if (len == tuple_size * vreg->fuse_combo_corner_sum
+ * sizeof(u32)) {
+ offset = tuple_size * vreg->fuse_combo_offset;
+ } else if (vreg->speed_bin_corner_sum > 0 &&
+ len == tuple_size * vreg->speed_bin_corner_sum * sizeof(u32)) {
+ offset = tuple_size * vreg->speed_bin_offset;
+ } else {
+ if (vreg->speed_bin_corner_sum > 0)
+ cpr3_err(vreg, "property %s has invalid length=%d, should be %zu, %zu, or %zu\n",
+ prop_name, len,
+ tuple_size * vreg->corner_count * sizeof(u32),
+ tuple_size * vreg->speed_bin_corner_sum
+ * sizeof(u32),
+ tuple_size * vreg->fuse_combo_corner_sum
+ * sizeof(u32));
+ else
+ cpr3_err(vreg, "property %s has invalid length=%d, should be %zu or %zu\n",
+ prop_name, len,
+ tuple_size * vreg->corner_count * sizeof(u32),
+ tuple_size * vreg->fuse_combo_corner_sum
+ * sizeof(u32));
+ return -EINVAL;
+ }
+
+ for (i = 0; i < tuple_size * vreg->corner_count; i++) {
+ rc = of_property_read_u32_index(node, prop_name, offset + i,
+ &out[i]);
+ if (rc) {
+ cpr3_err(vreg, "error reading property %s, rc=%d\n",
+ prop_name, rc);
+ return rc;
+ }
+ }
+
+ return 0;
+}
+
+/**
+ * cpr3_parse_corner_band_array_property() - fill a per-corner band array
+ * from a portion of the values specified for a device tree
+ * property
+ * @vreg: Pointer to the CPR3 regulator
+ * @prop_name: The name of the device tree property to read from
+ * @tuple_size: The number of elements in each per-corner band tuple
+ * @out: Output data array which must be of size:
+ * tuple_size * vreg->corner_band_count
+ *
+ * cpr3_parse_common_corner_data() must be called for vreg before this function
+ * is called so that fuse combo and speed bin size elements are initialized.
+ * In addition, corner band fuse combo and speed bin sum and offset elements
+ * must be initialized prior to executing this function.
+ *
+ * Three formats are supported for the device tree property:
+ * 1. Length == tuple_size * vreg->corner_band_count
+ * (reading begins at index 0)
+ * 2. Length == tuple_size * vreg->fuse_combo_corner_band_sum
+ * (reading begins at index tuple_size *
+ * vreg->fuse_combo_corner_band_offset)
+ * 3. Length == tuple_size * vreg->speed_bin_corner_band_sum
+ * (reading begins at index tuple_size *
+ * vreg->speed_bin_corner_band_offset)
+ *
+ * All other property lengths are treated as errors.
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_parse_corner_band_array_property(struct cpr3_regulator *vreg,
+ const char *prop_name, int tuple_size, u32 *out)
+{
+ struct device_node *node = vreg->of_node;
+ int len = 0;
+ int i, offset, rc;
+
+ if (!of_find_property(node, prop_name, &len)) {
+ cpr3_err(vreg, "property %s is missing\n", prop_name);
+ return -EINVAL;
+ }
+
+ if (len == tuple_size * vreg->corner_band_count * sizeof(u32)) {
+ offset = 0;
+ } else if (len == tuple_size * vreg->fuse_combo_corner_band_sum
+ * sizeof(u32)) {
+ offset = tuple_size * vreg->fuse_combo_corner_band_offset;
+ } else if (vreg->speed_bin_corner_band_sum > 0 &&
+ len == tuple_size * vreg->speed_bin_corner_band_sum *
+ sizeof(u32)) {
+ offset = tuple_size * vreg->speed_bin_corner_band_offset;
+ } else {
+ if (vreg->speed_bin_corner_band_sum > 0)
+ cpr3_err(vreg, "property %s has invalid length=%d, should be %zu, %zu, or %zu\n",
+ prop_name, len,
+ tuple_size * vreg->corner_band_count *
+ sizeof(u32),
+ tuple_size * vreg->speed_bin_corner_band_sum
+ * sizeof(u32),
+ tuple_size * vreg->fuse_combo_corner_band_sum
+ * sizeof(u32));
+ else
+ cpr3_err(vreg, "property %s has invalid length=%d, should be %zu or %zu\n",
+ prop_name, len,
+ tuple_size * vreg->corner_band_count *
+ sizeof(u32),
+ tuple_size * vreg->fuse_combo_corner_band_sum
+ * sizeof(u32));
+ return -EINVAL;
+ }
+
+ for (i = 0; i < tuple_size * vreg->corner_band_count; i++) {
+ rc = of_property_read_u32_index(node, prop_name, offset + i,
+ &out[i]);
+ if (rc) {
+ cpr3_err(vreg, "error reading property %s, rc=%d\n",
+ prop_name, rc);
+ return rc;
+ }
+ }
+
+ return 0;
+}
+
+/**
+ * cpr3_parse_common_corner_data() - parse common CPR3 properties relating to
+ * the corners supported by a CPR3 regulator from device tree
+ * @vreg: Pointer to the CPR3 regulator
+ *
+ * This function reads, validates, and utilizes the following device tree
+ * properties: qcom,cpr-fuse-corners, qcom,cpr-fuse-combos, qcom,cpr-speed-bins,
+ * qcom,cpr-speed-bin-corners, qcom,cpr-corners, qcom,cpr-voltage-ceiling,
+ * qcom,cpr-voltage-floor, qcom,corner-frequencies,
+ * and qcom,cpr-corner-fmax-map.
+ *
+ * It initializes these CPR3 regulator elements: corner, corner_count,
+ * fuse_combos_supported, fuse_corner_map, and speed_bins_supported. It
+ * initializes these elements for each corner: ceiling_volt, floor_volt,
+ * proc_freq, and cpr_fuse_corner.
+ *
+ * It requires that the following CPR3 regulator elements be initialized before
+ * being called: fuse_corner_count, fuse_combo, and speed_bin_fuse.
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_parse_common_corner_data(struct cpr3_regulator *vreg)
+{
+ struct device_node *node = vreg->of_node;
+ struct cpr3_controller *ctrl = vreg->thread->ctrl;
+ u32 max_fuse_combos, fuse_corners, aging_allowed = 0;
+ u32 max_speed_bins = 0;
+ u32 *combo_corners;
+ u32 *speed_bin_corners;
+ u32 *temp;
+ int i, j, rc;
+
+ rc = of_property_read_u32(node, "qcom,cpr-fuse-corners", &fuse_corners);
+ if (rc) {
+ cpr3_err(vreg, "error reading property qcom,cpr-fuse-corners, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ if (vreg->fuse_corner_count != fuse_corners) {
+ cpr3_err(vreg, "device tree config supports %d fuse corners but the hardware has %d fuse corners\n",
+ fuse_corners, vreg->fuse_corner_count);
+ return -EINVAL;
+ }
+
+ rc = of_property_read_u32(node, "qcom,cpr-fuse-combos",
+ &max_fuse_combos);
+ if (rc) {
+ cpr3_err(vreg, "error reading property qcom,cpr-fuse-combos, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ /*
+ * Sanity check against arbitrarily large value to avoid excessive
+ * memory allocation.
+ */
+ if (max_fuse_combos > 100 || max_fuse_combos == 0) {
+ cpr3_err(vreg, "qcom,cpr-fuse-combos is invalid: %u\n",
+ max_fuse_combos);
+ return -EINVAL;
+ }
+
+ if (vreg->fuse_combo >= max_fuse_combos) {
+ cpr3_err(vreg, "device tree config supports fuse combos 0-%u but the hardware has combo %d\n",
+ max_fuse_combos - 1, vreg->fuse_combo);
+ BUG_ON(1);
+ return -EINVAL;
+ }
+
+ vreg->fuse_combos_supported = max_fuse_combos;
+
+ of_property_read_u32(node, "qcom,cpr-speed-bins", &max_speed_bins);
+
+ /*
+ * Sanity check against arbitrarily large value to avoid excessive
+ * memory allocation.
+ */
+ if (max_speed_bins > 100) {
+ cpr3_err(vreg, "qcom,cpr-speed-bins is invalid: %u\n",
+ max_speed_bins);
+ return -EINVAL;
+ }
+
+ if (max_speed_bins && vreg->speed_bin_fuse >= max_speed_bins) {
+ cpr3_err(vreg, "device tree config supports speed bins 0-%u but the hardware has speed bin %d\n",
+ max_speed_bins - 1, vreg->speed_bin_fuse);
+ BUG();
+ return -EINVAL;
+ }
+
+ vreg->speed_bins_supported = max_speed_bins;
+
+ combo_corners = kcalloc(vreg->fuse_combos_supported,
+ sizeof(*combo_corners), GFP_KERNEL);
+ if (!combo_corners)
+ return -ENOMEM;
+
+ rc = of_property_read_u32_array(node, "qcom,cpr-corners", combo_corners,
+ vreg->fuse_combos_supported);
+ if (rc == -EOVERFLOW) {
+ /* Single value case */
+ rc = of_property_read_u32(node, "qcom,cpr-corners",
+ combo_corners);
+ for (i = 1; i < vreg->fuse_combos_supported; i++)
+ combo_corners[i] = combo_corners[0];
+ }
+ if (rc) {
+ cpr3_err(vreg, "error reading property qcom,cpr-corners, rc=%d\n",
+ rc);
+ kfree(combo_corners);
+ return rc;
+ }
+
+ vreg->fuse_combo_offset = 0;
+ vreg->fuse_combo_corner_sum = 0;
+ for (i = 0; i < vreg->fuse_combos_supported; i++) {
+ vreg->fuse_combo_corner_sum += combo_corners[i];
+ if (i < vreg->fuse_combo)
+ vreg->fuse_combo_offset += combo_corners[i];
+ }
+
+ vreg->corner_count = combo_corners[vreg->fuse_combo];
+
+ kfree(combo_corners);
+
+ vreg->speed_bin_offset = 0;
+ vreg->speed_bin_corner_sum = 0;
+ if (vreg->speed_bins_supported > 0) {
+ speed_bin_corners = kcalloc(vreg->speed_bins_supported,
+ sizeof(*speed_bin_corners), GFP_KERNEL);
+ if (!speed_bin_corners)
+ return -ENOMEM;
+
+ rc = of_property_read_u32_array(node,
+ "qcom,cpr-speed-bin-corners", speed_bin_corners,
+ vreg->speed_bins_supported);
+ if (rc) {
+ cpr3_err(vreg, "error reading property qcom,cpr-speed-bin-corners, rc=%d\n",
+ rc);
+ kfree(speed_bin_corners);
+ return rc;
+ }
+
+ for (i = 0; i < vreg->speed_bins_supported; i++) {
+ vreg->speed_bin_corner_sum += speed_bin_corners[i];
+ if (i < vreg->speed_bin_fuse)
+ vreg->speed_bin_offset += speed_bin_corners[i];
+ }
+
+ if (speed_bin_corners[vreg->speed_bin_fuse]
+ != vreg->corner_count) {
+ cpr3_err(vreg, "qcom,cpr-corners and qcom,cpr-speed-bin-corners conflict on number of corners: %d vs %u\n",
+ vreg->corner_count,
+ speed_bin_corners[vreg->speed_bin_fuse]);
+ kfree(speed_bin_corners);
+ return -EINVAL;
+ }
+
+ kfree(speed_bin_corners);
+ }
+
+ vreg->corner = devm_kcalloc(ctrl->dev, vreg->corner_count,
+ sizeof(*vreg->corner), GFP_KERNEL);
+ temp = kcalloc(vreg->corner_count, sizeof(*temp), GFP_KERNEL);
+ if (!vreg->corner || !temp)
+ return -ENOMEM;
+
+ rc = cpr3_parse_corner_array_property(vreg, "qcom,cpr-voltage-ceiling",
+ 1, temp);
+ if (rc)
+ goto free_temp;
+ for (i = 0; i < vreg->corner_count; i++) {
+ vreg->corner[i].ceiling_volt
+ = CPR3_ROUND(temp[i], ctrl->step_volt);
+ vreg->corner[i].abs_ceiling_volt = vreg->corner[i].ceiling_volt;
+ }
+
+ rc = cpr3_parse_corner_array_property(vreg, "qcom,cpr-voltage-floor",
+ 1, temp);
+ if (rc)
+ goto free_temp;
+ for (i = 0; i < vreg->corner_count; i++)
+ vreg->corner[i].floor_volt
+ = CPR3_ROUND(temp[i], ctrl->step_volt);
+
+ /* Validate ceiling and floor values */
+ for (i = 0; i < vreg->corner_count; i++) {
+ if (vreg->corner[i].floor_volt
+ > vreg->corner[i].ceiling_volt) {
+ cpr3_err(vreg, "CPR floor[%d]=%d > ceiling[%d]=%d uV\n",
+ i, vreg->corner[i].floor_volt,
+ i, vreg->corner[i].ceiling_volt);
+ rc = -EINVAL;
+ goto free_temp;
+ }
+ }
+
+ /* Load optional system-supply voltages */
+ if (of_find_property(vreg->of_node, "qcom,system-voltage", NULL)) {
+ rc = cpr3_parse_corner_array_property(vreg,
+ "qcom,system-voltage", 1, temp);
+ if (rc)
+ goto free_temp;
+ for (i = 0; i < vreg->corner_count; i++)
+ vreg->corner[i].system_volt = temp[i];
+ }
+
+ rc = cpr3_parse_corner_array_property(vreg, "qcom,corner-frequencies",
+ 1, temp);
+ if (rc)
+ goto free_temp;
+ for (i = 0; i < vreg->corner_count; i++)
+ vreg->corner[i].proc_freq = temp[i];
+
+ /* Validate frequencies */
+ for (i = 1; i < vreg->corner_count; i++) {
+ if (vreg->corner[i].proc_freq
+ < vreg->corner[i - 1].proc_freq) {
+ cpr3_err(vreg, "invalid frequency: freq[%d]=%u < freq[%d]=%u\n",
+ i, vreg->corner[i].proc_freq, i - 1,
+ vreg->corner[i - 1].proc_freq);
+ rc = -EINVAL;
+ goto free_temp;
+ }
+ }
+
+ vreg->fuse_corner_map = devm_kcalloc(ctrl->dev, vreg->fuse_corner_count,
+ sizeof(*vreg->fuse_corner_map), GFP_KERNEL);
+ if (!vreg->fuse_corner_map) {
+ rc = -ENOMEM;
+ goto free_temp;
+ }
+
+ rc = cpr3_parse_array_property(vreg, "qcom,cpr-corner-fmax-map",
+ vreg->fuse_corner_count, temp);
+ if (rc)
+ goto free_temp;
+ for (i = 0; i < vreg->fuse_corner_count; i++) {
+ vreg->fuse_corner_map[i] = temp[i] - CPR3_CORNER_OFFSET;
+ if (temp[i] < CPR3_CORNER_OFFSET
+ || temp[i] > vreg->corner_count + CPR3_CORNER_OFFSET) {
+ cpr3_err(vreg, "invalid corner value specified in qcom,cpr-corner-fmax-map: %u\n",
+ temp[i]);
+ rc = -EINVAL;
+ goto free_temp;
+ } else if (i > 0 && temp[i - 1] >= temp[i]) {
+ cpr3_err(vreg, "invalid corner %u less than or equal to previous corner %u\n",
+ temp[i], temp[i - 1]);
+ rc = -EINVAL;
+ goto free_temp;
+ }
+ }
+ if (temp[vreg->fuse_corner_count - 1] != vreg->corner_count)
+ cpr3_debug(vreg, "Note: highest Fmax corner %u in qcom,cpr-corner-fmax-map does not match highest supported corner %d\n",
+ temp[vreg->fuse_corner_count - 1],
+ vreg->corner_count);
+
+ for (i = 0; i < vreg->corner_count; i++) {
+ for (j = 0; j < vreg->fuse_corner_count; j++) {
+ if (i + CPR3_CORNER_OFFSET <= temp[j]) {
+ vreg->corner[i].cpr_fuse_corner = j;
+ break;
+ }
+ }
+ if (j == vreg->fuse_corner_count) {
+ /*
+ * Handle the case where the highest fuse corner maps
+ * to a corner below the highest corner.
+ */
+ vreg->corner[i].cpr_fuse_corner
+ = vreg->fuse_corner_count - 1;
+ }
+ }
+
+ if (of_find_property(vreg->of_node,
+ "qcom,allow-aging-voltage-adjustment", NULL)) {
+ rc = cpr3_parse_array_property(vreg,
+ "qcom,allow-aging-voltage-adjustment",
+ 1, &aging_allowed);
+ if (rc)
+ goto free_temp;
+
+ vreg->aging_allowed = aging_allowed;
+ }
+
+ if (of_find_property(vreg->of_node,
+ "qcom,allow-aging-open-loop-voltage-adjustment", NULL)) {
+ rc = cpr3_parse_array_property(vreg,
+ "qcom,allow-aging-open-loop-voltage-adjustment",
+ 1, &aging_allowed);
+ if (rc)
+ goto free_temp;
+
+ vreg->aging_allow_open_loop_adj = aging_allowed;
+ }
+
+ if (vreg->aging_allowed) {
+ if (ctrl->aging_ref_volt <= 0) {
+ cpr3_err(ctrl, "qcom,cpr-aging-ref-voltage must be specified\n");
+ rc = -EINVAL;
+ goto free_temp;
+ }
+
+ rc = cpr3_parse_array_property(vreg,
+ "qcom,cpr-aging-max-voltage-adjustment",
+ 1, &vreg->aging_max_adjust_volt);
+ if (rc)
+ goto free_temp;
+
+ rc = cpr3_parse_array_property(vreg,
+ "qcom,cpr-aging-ref-corner", 1, &vreg->aging_corner);
+ if (rc) {
+ goto free_temp;
+ } else if (vreg->aging_corner < CPR3_CORNER_OFFSET
+ || vreg->aging_corner > vreg->corner_count - 1
+ + CPR3_CORNER_OFFSET) {
+ cpr3_err(vreg, "aging reference corner=%d not in range [%d, %d]\n",
+ vreg->aging_corner, CPR3_CORNER_OFFSET,
+ vreg->corner_count - 1 + CPR3_CORNER_OFFSET);
+ rc = -EINVAL;
+ goto free_temp;
+ }
+ vreg->aging_corner -= CPR3_CORNER_OFFSET;
+
+ if (of_find_property(vreg->of_node, "qcom,cpr-aging-derate",
+ NULL)) {
+ rc = cpr3_parse_corner_array_property(vreg,
+ "qcom,cpr-aging-derate", 1, temp);
+ if (rc)
+ goto free_temp;
+
+ for (i = 0; i < vreg->corner_count; i++)
+ vreg->corner[i].aging_derate = temp[i];
+ } else {
+ for (i = 0; i < vreg->corner_count; i++)
+ vreg->corner[i].aging_derate
+ = CPR3_AGING_DERATE_UNITY;
+ }
+ }
+
+free_temp:
+ kfree(temp);
+ return rc;
+}
+
+/**
+ * cpr3_parse_thread_u32() - parse the specified property from the CPR3 thread's
+ * device tree node and verify that it is within the allowed limits
+ * @thread: Pointer to the CPR3 thread
+ * @propname: The name of the device tree property to read
+ * @out_value: The output pointer to fill with the value read
+ * @value_min: The minimum allowed property value
+ * @value_max: The maximum allowed property value
+ *
+ * This function prints a verbose error message if the property is missing or
+ * has a value which is not within the specified range.
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_parse_thread_u32(struct cpr3_thread *thread, const char *propname,
+ u32 *out_value, u32 value_min, u32 value_max)
+{
+ int rc;
+
+ rc = of_property_read_u32(thread->of_node, propname, out_value);
+ if (rc) {
+ cpr3_err(thread->ctrl, "thread %u error reading property %s, rc=%d\n",
+ thread->thread_id, propname, rc);
+ return rc;
+ }
+
+ if (*out_value < value_min || *out_value > value_max) {
+ cpr3_err(thread->ctrl, "thread %u %s=%u is invalid; allowed range: [%u, %u]\n",
+ thread->thread_id, propname, *out_value, value_min,
+ value_max);
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+/**
+ * cpr3_parse_ctrl_u32() - parse the specified property from the CPR3
+ * controller's device tree node and verify that it is within the
+ * allowed limits
+ * @ctrl: Pointer to the CPR3 controller
+ * @propname: The name of the device tree property to read
+ * @out_value: The output pointer to fill with the value read
+ * @value_min: The minimum allowed property value
+ * @value_max: The maximum allowed property value
+ *
+ * This function prints a verbose error message if the property is missing or
+ * has a value which is not within the specified range.
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_parse_ctrl_u32(struct cpr3_controller *ctrl, const char *propname,
+ u32 *out_value, u32 value_min, u32 value_max)
+{
+ int rc;
+
+ rc = of_property_read_u32(ctrl->dev->of_node, propname, out_value);
+ if (rc) {
+ cpr3_err(ctrl, "error reading property %s, rc=%d\n",
+ propname, rc);
+ return rc;
+ }
+
+ if (*out_value < value_min || *out_value > value_max) {
+ cpr3_err(ctrl, "%s=%u is invalid; allowed range: [%u, %u]\n",
+ propname, *out_value, value_min, value_max);
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+/**
+ * cpr3_parse_common_thread_data() - parse common CPR3 thread properties from
+ * device tree
+ * @thread: Pointer to the CPR3 thread
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_parse_common_thread_data(struct cpr3_thread *thread)
+{
+ int rc;
+
+ rc = cpr3_parse_thread_u32(thread, "qcom,cpr-consecutive-up",
+ &thread->consecutive_up, CPR3_CONSECUTIVE_UP_DOWN_MIN,
+ CPR3_CONSECUTIVE_UP_DOWN_MAX);
+ if (rc)
+ return rc;
+
+ rc = cpr3_parse_thread_u32(thread, "qcom,cpr-consecutive-down",
+ &thread->consecutive_down, CPR3_CONSECUTIVE_UP_DOWN_MIN,
+ CPR3_CONSECUTIVE_UP_DOWN_MAX);
+ if (rc)
+ return rc;
+
+ rc = cpr3_parse_thread_u32(thread, "qcom,cpr-up-threshold",
+ &thread->up_threshold, CPR3_UP_DOWN_THRESHOLD_MIN,
+ CPR3_UP_DOWN_THRESHOLD_MAX);
+ if (rc)
+ return rc;
+
+ rc = cpr3_parse_thread_u32(thread, "qcom,cpr-down-threshold",
+ &thread->down_threshold, CPR3_UP_DOWN_THRESHOLD_MIN,
+ CPR3_UP_DOWN_THRESHOLD_MAX);
+ if (rc)
+ return rc;
+
+ return rc;
+}
+
+/**
+ * cpr3_parse_irq_affinity() - parse CPR IRQ affinity information
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_parse_irq_affinity(struct cpr3_controller *ctrl)
+{
+ struct device_node *cpu_node;
+ int i, cpu;
+ int len = 0;
+
+ if (!of_find_property(ctrl->dev->of_node, "qcom,cpr-interrupt-affinity",
+ &len)) {
+ /* No IRQ affinity required */
+ return 0;
+ }
+
+ len /= sizeof(u32);
+
+ for (i = 0; i < len; i++) {
+ cpu_node = of_parse_phandle(ctrl->dev->of_node,
+ "qcom,cpr-interrupt-affinity", i);
+ if (!cpu_node) {
+ cpr3_err(ctrl, "could not find CPU node %d\n", i);
+ return -EINVAL;
+ }
+
+ for_each_possible_cpu(cpu) {
+ if (of_get_cpu_node(cpu, NULL) == cpu_node) {
+ cpumask_set_cpu(cpu, &ctrl->irq_affinity_mask);
+ break;
+ }
+ }
+ of_node_put(cpu_node);
+ }
+
+ return 0;
+}
+
+static int cpr3_panic_notifier_init(struct cpr3_controller *ctrl)
+{
+ struct device_node *node = ctrl->dev->of_node;
+ struct cpr3_panic_regs_info *panic_regs_info;
+ struct cpr3_reg_info *regs;
+ int i, reg_count, len, rc = 0;
+
+ if (!of_find_property(node, "qcom,cpr-panic-reg-addr-list", &len)) {
+ /* panic register address list not specified */
+ return rc;
+ }
+
+ reg_count = len / sizeof(u32);
+ if (!reg_count) {
+ cpr3_err(ctrl, "qcom,cpr-panic-reg-addr-list has invalid len = %d\n",
+ len);
+ return -EINVAL;
+ }
+
+ if (!of_find_property(node, "qcom,cpr-panic-reg-name-list", NULL)) {
+ cpr3_err(ctrl, "property qcom,cpr-panic-reg-name-list not specified\n");
+ return -EINVAL;
+ }
+
+ len = of_property_count_strings(node, "qcom,cpr-panic-reg-name-list");
+ if (reg_count != len) {
+ cpr3_err(ctrl, "qcom,cpr-panic-reg-name-list should have %d strings\n",
+ reg_count);
+ return -EINVAL;
+ }
+
+ panic_regs_info = devm_kzalloc(ctrl->dev, sizeof(*panic_regs_info),
+ GFP_KERNEL);
+ if (!panic_regs_info)
+ return -ENOMEM;
+
+ regs = devm_kcalloc(ctrl->dev, reg_count, sizeof(*regs), GFP_KERNEL);
+ if (!regs)
+ return -ENOMEM;
+
+ for (i = 0; i < reg_count; i++) {
+ rc = of_property_read_string_index(node,
+ "qcom,cpr-panic-reg-name-list", i,
+ &(regs[i].name));
+ if (rc) {
+ cpr3_err(ctrl, "error reading property qcom,cpr-panic-reg-name-list, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ rc = of_property_read_u32_index(node,
+ "qcom,cpr-panic-reg-addr-list", i,
+ &(regs[i].addr));
+ if (rc) {
+ cpr3_err(ctrl, "error reading property qcom,cpr-panic-reg-addr-list, rc=%d\n",
+ rc);
+ return rc;
+ }
+ regs[i].virt_addr = devm_ioremap(ctrl->dev, regs[i].addr, 0x4);
+ if (!regs[i].virt_addr) {
+ pr_err("Unable to map panic register addr 0x%08x\n",
+ regs[i].addr);
+ return -EINVAL;
+ }
+ regs[i].value = 0xFFFFFFFF;
+ }
+
+ panic_regs_info->reg_count = reg_count;
+ panic_regs_info->regs = regs;
+ ctrl->panic_regs_info = panic_regs_info;
+
+ return rc;
+}
+
+/**
+ * cpr3_parse_common_ctrl_data() - parse common CPR3 controller properties from
+ * device tree
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_parse_common_ctrl_data(struct cpr3_controller *ctrl)
+{
+ int rc;
+
+ rc = cpr3_parse_ctrl_u32(ctrl, "qcom,cpr-sensor-time",
+ &ctrl->sensor_time, 0, UINT_MAX);
+ if (rc)
+ return rc;
+
+ rc = cpr3_parse_ctrl_u32(ctrl, "qcom,cpr-loop-time",
+ &ctrl->loop_time, 0, UINT_MAX);
+ if (rc)
+ return rc;
+
+ rc = cpr3_parse_ctrl_u32(ctrl, "qcom,cpr-idle-cycles",
+ &ctrl->idle_clocks, CPR3_IDLE_CLOCKS_MIN,
+ CPR3_IDLE_CLOCKS_MAX);
+ if (rc)
+ return rc;
+
+ rc = cpr3_parse_ctrl_u32(ctrl, "qcom,cpr-step-quot-init-min",
+ &ctrl->step_quot_init_min, CPR3_STEP_QUOT_MIN,
+ CPR3_STEP_QUOT_MAX);
+ if (rc)
+ return rc;
+
+ rc = cpr3_parse_ctrl_u32(ctrl, "qcom,cpr-step-quot-init-max",
+ &ctrl->step_quot_init_max, CPR3_STEP_QUOT_MIN,
+ CPR3_STEP_QUOT_MAX);
+ if (rc)
+ return rc;
+
+ rc = of_property_read_u32(ctrl->dev->of_node, "qcom,voltage-step",
+ &ctrl->step_volt);
+ if (rc) {
+ cpr3_err(ctrl, "error reading property qcom,voltage-step, rc=%d\n",
+ rc);
+ return rc;
+ }
+ if (ctrl->step_volt <= 0) {
+ cpr3_err(ctrl, "qcom,voltage-step=%d is invalid\n",
+ ctrl->step_volt);
+ return -EINVAL;
+ }
+
+ rc = cpr3_parse_ctrl_u32(ctrl, "qcom,cpr-count-mode",
+ &ctrl->count_mode, CPR3_COUNT_MODE_ALL_AT_ONCE_MIN,
+ CPR3_COUNT_MODE_STAGGERED);
+ if (rc)
+ return rc;
+
+ /* Count repeat is optional */
+ ctrl->count_repeat = 0;
+ of_property_read_u32(ctrl->dev->of_node, "qcom,cpr-count-repeat",
+ &ctrl->count_repeat);
+
+ ctrl->cpr_allowed_sw =
+ of_property_read_bool(ctrl->dev->of_node, "qcom,cpr-enable") ||
+ ctrl->cpr_global_setting == CPR_CLOSED_LOOP_EN;
+
+ rc = cpr3_parse_irq_affinity(ctrl);
+ if (rc)
+ return rc;
+
+ /* Aging reference voltage is optional */
+ ctrl->aging_ref_volt = 0;
+ of_property_read_u32(ctrl->dev->of_node, "qcom,cpr-aging-ref-voltage",
+ &ctrl->aging_ref_volt);
+
+ /* Aging possible bitmask is optional */
+ ctrl->aging_possible_mask = 0;
+ of_property_read_u32(ctrl->dev->of_node,
+ "qcom,cpr-aging-allowed-reg-mask",
+ &ctrl->aging_possible_mask);
+
+ if (ctrl->aging_possible_mask) {
+ /*
+ * Aging possible register value required if bitmask is
+ * specified
+ */
+ rc = cpr3_parse_ctrl_u32(ctrl,
+ "qcom,cpr-aging-allowed-reg-value",
+ &ctrl->aging_possible_val, 0, UINT_MAX);
+ if (rc)
+ return rc;
+ }
+
+ if (of_find_property(ctrl->dev->of_node, "clock-names", NULL)) {
+ ctrl->core_clk = devm_clk_get(ctrl->dev, "core_clk");
+ if (IS_ERR(ctrl->core_clk)) {
+ rc = PTR_ERR(ctrl->core_clk);
+ if (rc != -EPROBE_DEFER)
+ cpr3_err(ctrl, "unable request core clock, rc=%d\n",
+ rc);
+ return rc;
+ }
+ }
+
+ rc = cpr3_panic_notifier_init(ctrl);
+ if (rc)
+ return rc;
+
+ if (of_find_property(ctrl->dev->of_node, "vdd-supply", NULL)) {
+ ctrl->vdd_regulator = devm_regulator_get(ctrl->dev, "vdd");
+ if (IS_ERR(ctrl->vdd_regulator)) {
+ rc = PTR_ERR(ctrl->vdd_regulator);
+ if (rc != -EPROBE_DEFER)
+ cpr3_err(ctrl, "unable to request vdd regulator, rc=%d\n",
+ rc);
+ return rc;
+ }
+ } else {
+ cpr3_err(ctrl, "vdd supply is not defined\n");
+ return -ENODEV;
+ }
+
+ ctrl->system_regulator = devm_regulator_get_optional(ctrl->dev,
+ "system");
+ if (IS_ERR(ctrl->system_regulator)) {
+ rc = PTR_ERR(ctrl->system_regulator);
+ if (rc != -EPROBE_DEFER) {
+ rc = 0;
+ ctrl->system_regulator = NULL;
+ } else {
+ return rc;
+ }
+ }
+
+ ctrl->mem_acc_regulator = devm_regulator_get_optional(ctrl->dev,
+ "mem-acc");
+ if (IS_ERR(ctrl->mem_acc_regulator)) {
+ rc = PTR_ERR(ctrl->mem_acc_regulator);
+ if (rc != -EPROBE_DEFER) {
+ rc = 0;
+ ctrl->mem_acc_regulator = NULL;
+ } else {
+ return rc;
+ }
+ }
+
+ return rc;
+}
+
+/**
+ * cpr3_parse_open_loop_common_ctrl_data() - parse common open loop CPR3
+ * controller properties from device tree
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_parse_open_loop_common_ctrl_data(struct cpr3_controller *ctrl)
+{
+ int rc;
+
+ rc = of_property_read_u32(ctrl->dev->of_node, "qcom,voltage-step",
+ &ctrl->step_volt);
+ if (rc) {
+ cpr3_err(ctrl, "error reading property qcom,voltage-step, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ if (ctrl->step_volt <= 0) {
+ cpr3_err(ctrl, "qcom,voltage-step=%d is invalid\n",
+ ctrl->step_volt);
+ return -EINVAL;
+ }
+
+ if (of_find_property(ctrl->dev->of_node, "vdd-supply", NULL)) {
+ ctrl->vdd_regulator = devm_regulator_get(ctrl->dev, "vdd");
+ if (IS_ERR(ctrl->vdd_regulator)) {
+ rc = PTR_ERR(ctrl->vdd_regulator);
+ if (rc != -EPROBE_DEFER)
+ cpr3_err(ctrl, "unable to request vdd regulator, rc=%d\n",
+ rc);
+ return rc;
+ }
+ } else {
+ cpr3_err(ctrl, "vdd supply is not defined\n");
+ return -ENODEV;
+ }
+
+ ctrl->system_regulator = devm_regulator_get_optional(ctrl->dev,
+ "system");
+ if (IS_ERR(ctrl->system_regulator)) {
+ rc = PTR_ERR(ctrl->system_regulator);
+ if (rc != -EPROBE_DEFER) {
+ rc = 0;
+ ctrl->system_regulator = NULL;
+ } else {
+ return rc;
+ }
+ } else {
+ rc = regulator_enable(ctrl->system_regulator);
+ }
+
+ ctrl->mem_acc_regulator = devm_regulator_get_optional(ctrl->dev,
+ "mem-acc");
+ if (IS_ERR(ctrl->mem_acc_regulator)) {
+ rc = PTR_ERR(ctrl->mem_acc_regulator);
+ if (rc != -EPROBE_DEFER) {
+ rc = 0;
+ ctrl->mem_acc_regulator = NULL;
+ } else {
+ return rc;
+ }
+ }
+
+ return rc;
+}
+
+/**
+ * cpr3_limit_open_loop_voltages() - modify the open-loop voltage of each corner
+ * so that it fits within the floor to ceiling
+ * voltage range of the corner
+ * @vreg: Pointer to the CPR3 regulator
+ *
+ * This function clips the open-loop voltage for each corner so that it is
+ * limited to the floor to ceiling range. It also rounds each open-loop voltage
+ * so that it corresponds to a set point available to the underlying regulator.
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_limit_open_loop_voltages(struct cpr3_regulator *vreg)
+{
+ int i, volt;
+
+ cpr3_debug(vreg, "open-loop voltages after trimming and rounding:\n");
+ for (i = 0; i < vreg->corner_count; i++) {
+ volt = CPR3_ROUND(vreg->corner[i].open_loop_volt,
+ vreg->thread->ctrl->step_volt);
+ if (volt < vreg->corner[i].floor_volt)
+ volt = vreg->corner[i].floor_volt;
+ else if (volt > vreg->corner[i].ceiling_volt)
+ volt = vreg->corner[i].ceiling_volt;
+ vreg->corner[i].open_loop_volt = volt;
+ cpr3_debug(vreg, "corner[%2d]: open-loop=%d uV\n", i, volt);
+ }
+
+ return 0;
+}
+
+/**
+ * cpr3_open_loop_voltage_as_ceiling() - configures the ceiling voltage for each
+ * corner to equal the open-loop voltage if the relevant device
+ * tree property is found for the CPR3 regulator
+ * @vreg: Pointer to the CPR3 regulator
+ *
+ * This function assumes that the the open-loop voltage for each corner has
+ * already been rounded to the nearest allowed set point and that it falls
+ * within the floor to ceiling range.
+ *
+ * Return: none
+ */
+void cpr3_open_loop_voltage_as_ceiling(struct cpr3_regulator *vreg)
+{
+ int i;
+
+ if (!of_property_read_bool(vreg->of_node,
+ "qcom,cpr-scaled-open-loop-voltage-as-ceiling"))
+ return;
+
+ for (i = 0; i < vreg->corner_count; i++)
+ vreg->corner[i].ceiling_volt
+ = vreg->corner[i].open_loop_volt;
+}
+
+/**
+ * cpr3_limit_floor_voltages() - raise the floor voltage of each corner so that
+ * the optional maximum floor to ceiling voltage range specified in
+ * device tree is satisfied
+ * @vreg: Pointer to the CPR3 regulator
+ *
+ * This function also ensures that the open-loop voltage for each corner falls
+ * within the final floor to ceiling voltage range and that floor voltages
+ * increase monotonically.
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_limit_floor_voltages(struct cpr3_regulator *vreg)
+{
+ char *prop = "qcom,cpr-floor-to-ceiling-max-range";
+ int i, floor_new;
+ u32 *floor_range;
+ int rc = 0;
+
+ if (!of_find_property(vreg->of_node, prop, NULL))
+ goto enforce_monotonicity;
+
+ floor_range = kcalloc(vreg->corner_count, sizeof(*floor_range),
+ GFP_KERNEL);
+ if (!floor_range)
+ return -ENOMEM;
+
+ rc = cpr3_parse_corner_array_property(vreg, prop, 1, floor_range);
+ if (rc)
+ goto free_floor_adjust;
+
+ for (i = 0; i < vreg->corner_count; i++) {
+ if ((s32)floor_range[i] >= 0) {
+ floor_new = CPR3_ROUND(vreg->corner[i].ceiling_volt
+ - floor_range[i],
+ vreg->thread->ctrl->step_volt);
+
+ vreg->corner[i].floor_volt = max(floor_new,
+ vreg->corner[i].floor_volt);
+ if (vreg->corner[i].open_loop_volt
+ < vreg->corner[i].floor_volt)
+ vreg->corner[i].open_loop_volt
+ = vreg->corner[i].floor_volt;
+ }
+ }
+
+free_floor_adjust:
+ kfree(floor_range);
+
+enforce_monotonicity:
+ /* Ensure that floor voltages increase monotonically. */
+ for (i = 1; i < vreg->corner_count; i++) {
+ if (vreg->corner[i].floor_volt
+ < vreg->corner[i - 1].floor_volt) {
+ cpr3_debug(vreg, "corner %d floor voltage=%d uV < corner %d voltage=%d uV; overriding: corner %d voltage=%d\n",
+ i, vreg->corner[i].floor_volt,
+ i - 1, vreg->corner[i - 1].floor_volt,
+ i, vreg->corner[i - 1].floor_volt);
+ vreg->corner[i].floor_volt
+ = vreg->corner[i - 1].floor_volt;
+
+ if (vreg->corner[i].open_loop_volt
+ < vreg->corner[i].floor_volt)
+ vreg->corner[i].open_loop_volt
+ = vreg->corner[i].floor_volt;
+ if (vreg->corner[i].ceiling_volt
+ < vreg->corner[i].floor_volt)
+ vreg->corner[i].ceiling_volt
+ = vreg->corner[i].floor_volt;
+ }
+ }
+
+ return rc;
+}
+
+/**
+ * cpr3_print_quots() - print CPR target quotients into the kernel log for
+ * debugging purposes
+ * @vreg: Pointer to the CPR3 regulator
+ *
+ * Return: none
+ */
+void cpr3_print_quots(struct cpr3_regulator *vreg)
+{
+ int i, j, pos;
+ size_t buflen;
+ char *buf;
+
+ buflen = sizeof(*buf) * CPR3_RO_COUNT * (MAX_CHARS_PER_INT + 2);
+ buf = kzalloc(buflen, GFP_KERNEL);
+ if (!buf)
+ return;
+
+ for (i = 0; i < vreg->corner_count; i++) {
+ for (j = 0, pos = 0; j < CPR3_RO_COUNT; j++)
+ pos += scnprintf(buf + pos, buflen - pos, " %u",
+ vreg->corner[i].target_quot[j]);
+ cpr3_debug(vreg, "target quots[%2d]:%s\n", i, buf);
+ }
+
+ kfree(buf);
+}
+
+/**
+ * cpr3_determine_part_type() - determine the part type (SS/TT/FF).
+ *
+ * qcom,cpr-part-types prop tells the number of part types for which correction
+ * voltages are different. Another prop qcom,cpr-parts-voltage will contain the
+ * open loop fuse voltage which will be compared with this part voltage
+ * and accordingly part type will de determined.
+ *
+ * if qcom,cpr-part-types has value n, then qcom,cpr-parts-voltage will be
+ * array of n - 1 elements which will contain the voltage in increasing order.
+ * This function compares the fused volatge with all these voltage and returns
+ * the first index for which the fused volatge is greater.
+ *
+ * @vreg: Pointer to the CPR3 regulator
+ * @fuse_volt: fused open loop voltage which will be compared with
+ * qcom,cpr-parts-voltage array
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_determine_part_type(struct cpr3_regulator *vreg, int fuse_volt)
+{
+ int i, rc, len;
+ u32 volt;
+ int soc_version_major;
+ char prop_name[100];
+ const char prop_name_def[] = "qcom,cpr-parts-voltage";
+ const char prop_name_v2[] = "qcom,cpr-parts-voltage-v2";
+
+ soc_version_major = read_ipq_soc_version_major();
+ BUG_ON(soc_version_major <= 0);
+
+ if (of_property_read_u32(vreg->of_node, "qcom,cpr-part-types",
+ &vreg->part_type_supported))
+ return 0;
+
+ if (soc_version_major > 1)
+ strlcpy(prop_name, prop_name_v2, sizeof(prop_name_v2));
+ else
+ strlcpy(prop_name, prop_name_def, sizeof(prop_name_def));
+
+ if (!of_find_property(vreg->of_node, prop_name, &len)) {
+ cpr3_err(vreg, "property %s is missing\n", prop_name);
+ return -EINVAL;
+ }
+
+ if (len != (vreg->part_type_supported - 1) * sizeof(u32)) {
+ cpr3_err(vreg, "wrong len in qcom,cpr-parts-voltage\n");
+ return -EINVAL;
+ }
+
+ for (i = 0; i < vreg->part_type_supported - 1; i++) {
+ rc = of_property_read_u32_index(vreg->of_node,
+ prop_name, i, &volt);
+ if (rc) {
+ cpr3_err(vreg, "error reading property %s, rc=%d\n",
+ prop_name, rc);
+ return rc;
+ }
+
+ if (fuse_volt < volt)
+ break;
+ }
+
+ vreg->part_type = i;
+ return 0;
+}
+
+int cpr3_determine_temp_base_open_loop_correction(struct cpr3_regulator *vreg,
+ int *fuse_volt)
+{
+ int i, rc, prev_volt;
+ int *volt_adjust;
+ char prop_str[75];
+ int soc_version_major = read_ipq_soc_version_major();
+
+ BUG_ON(soc_version_major <= 0);
+
+ if (vreg->part_type_supported) {
+ if (soc_version_major > 1)
+ snprintf(prop_str, sizeof(prop_str),
+ "qcom,cpr-cold-temp-voltage-adjustment-v2-%d",
+ vreg->part_type);
+ else
+ snprintf(prop_str, sizeof(prop_str),
+ "qcom,cpr-cold-temp-voltage-adjustment-%d",
+ vreg->part_type);
+ } else {
+ strlcpy(prop_str, "qcom,cpr-cold-temp-voltage-adjustment",
+ sizeof(prop_str));
+ }
+
+ if (!of_find_property(vreg->of_node, prop_str, NULL)) {
+ /* No adjustment required. */
+ cpr3_info(vreg, "No cold temperature adjustment required.\n");
+ return 0;
+ }
+
+ volt_adjust = kcalloc(vreg->fuse_corner_count, sizeof(*volt_adjust),
+ GFP_KERNEL);
+ if (!volt_adjust)
+ return -ENOMEM;
+
+ rc = cpr3_parse_array_property(vreg, prop_str,
+ vreg->fuse_corner_count, volt_adjust);
+ if (rc) {
+ cpr3_err(vreg, "could not load cold temp voltage adjustments, rc=%d\n",
+ rc);
+ goto done;
+ }
+
+ for (i = 0; i < vreg->fuse_corner_count; i++) {
+ if (volt_adjust[i]) {
+ prev_volt = fuse_volt[i];
+ fuse_volt[i] += volt_adjust[i];
+ cpr3_debug(vreg,
+ "adjusted fuse corner %d open-loop voltage: %d -> %d uV\n",
+ i, prev_volt, fuse_volt[i]);
+ }
+ }
+
+done:
+ kfree(volt_adjust);
+ return rc;
+}
+
+/**
+ * cpr3_can_adjust_cold_temp() - Is cold temperature adjustment available
+ *
+ * @vreg: Pointer to the CPR3 regulator
+ *
+ * This function checks the cold temperature threshold is available
+ *
+ * Return: true on cold temperature threshold is available, else false
+ */
+bool cpr3_can_adjust_cold_temp(struct cpr3_regulator *vreg)
+{
+ char prop_str[75];
+ int soc_version_major = read_ipq_soc_version_major();
+
+ BUG_ON(soc_version_major <= 0);
+
+ if (soc_version_major > 1)
+ strlcpy(prop_str, "qcom,cpr-cold-temp-threshold-v2",
+ sizeof(prop_str));
+ else
+ strlcpy(prop_str, "qcom,cpr-cold-temp-threshold",
+ sizeof(prop_str));
+
+ if (!of_find_property(vreg->of_node, prop_str, NULL)) {
+ /* No adjustment required. */
+ return false;
+ } else
+ return true;
+}
+
+/**
+ * cpr3_get_cold_temp_threshold() - get cold temperature threshold
+ *
+ * @vreg: Pointer to the CPR3 regulator
+ * @cold_temp: cold temperature read.
+ *
+ * This function reads the cold temperature threshold below which
+ * cold temperature adjustment margins will be applied.
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_get_cold_temp_threshold(struct cpr3_regulator *vreg, int *cold_temp)
+{
+ int rc;
+ u32 temp;
+ char req_prop_str[75], prop_str[75];
+ int soc_version_major = read_ipq_soc_version_major();
+
+ BUG_ON(soc_version_major <= 0);
+
+ if (vreg->part_type_supported) {
+ if (soc_version_major > 1)
+ snprintf(req_prop_str, sizeof(req_prop_str),
+ "qcom,cpr-cold-temp-voltage-adjustment-v2-%d",
+ vreg->part_type);
+ else
+ snprintf(req_prop_str, sizeof(req_prop_str),
+ "qcom,cpr-cold-temp-voltage-adjustment-%d",
+ vreg->part_type);
+ } else {
+ strlcpy(req_prop_str, "qcom,cpr-cold-temp-voltage-adjustment",
+ sizeof(req_prop_str));
+ }
+
+ if (soc_version_major > 1)
+ strlcpy(prop_str, "qcom,cpr-cold-temp-threshold-v2",
+ sizeof(prop_str));
+ else
+ strlcpy(prop_str, "qcom,cpr-cold-temp-threshold",
+ sizeof(prop_str));
+
+ if (!of_find_property(vreg->of_node, req_prop_str, NULL)) {
+ /* No adjustment required. */
+ cpr3_info(vreg, "Cold temperature adjustment not required.\n");
+ return 0;
+ }
+
+ if (!of_find_property(vreg->of_node, prop_str, NULL)) {
+ /* No adjustment required. */
+ cpr3_err(vreg, "Missing %s required for %s\n",
+ prop_str, req_prop_str);
+ return -EINVAL;
+ }
+
+ rc = of_property_read_u32(vreg->of_node, prop_str, &temp);
+ if (rc) {
+ cpr3_err(vreg, "error reading property %s, rc=%d\n",
+ prop_str, rc);
+ return rc;
+ }
+
+ *cold_temp = temp;
+ return 0;
+}
+
+/**
+ * cpr3_adjust_fused_open_loop_voltages() - adjust the fused open-loop voltages
+ * for each fuse corner according to device tree values
+ * @vreg: Pointer to the CPR3 regulator
+ * @fuse_volt: Pointer to an array of the fused open-loop voltage
+ * values
+ *
+ * Voltage values in fuse_volt are modified in place.
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_adjust_fused_open_loop_voltages(struct cpr3_regulator *vreg,
+ int *fuse_volt)
+{
+ int i, rc, prev_volt;
+ int *volt_adjust;
+ char prop_str[75];
+ int soc_version_major = read_ipq_soc_version_major();
+
+ BUG_ON(soc_version_major <= 0);
+
+ if (vreg->part_type_supported) {
+ if (soc_version_major > 1)
+ snprintf(prop_str, sizeof(prop_str),
+ "qcom,cpr-open-loop-voltage-fuse-adjustment-v2-%d",
+ vreg->part_type);
+ else
+ snprintf(prop_str, sizeof(prop_str),
+ "qcom,cpr-open-loop-voltage-fuse-adjustment-%d",
+ vreg->part_type);
+ } else {
+ strlcpy(prop_str, "qcom,cpr-open-loop-voltage-fuse-adjustment",
+ sizeof(prop_str));
+ }
+
+ if (!of_find_property(vreg->of_node, prop_str, NULL)) {
+ /* No adjustment required. */
+ return 0;
+ }
+
+ volt_adjust = kcalloc(vreg->fuse_corner_count, sizeof(*volt_adjust),
+ GFP_KERNEL);
+ if (!volt_adjust)
+ return -ENOMEM;
+
+ rc = cpr3_parse_array_property(vreg,
+ prop_str, vreg->fuse_corner_count, volt_adjust);
+ if (rc) {
+ cpr3_err(vreg, "could not load open-loop fused voltage adjustments, rc=%d\n",
+ rc);
+ goto done;
+ }
+
+ for (i = 0; i < vreg->fuse_corner_count; i++) {
+ if (volt_adjust[i]) {
+ prev_volt = fuse_volt[i];
+ fuse_volt[i] += volt_adjust[i];
+ cpr3_debug(vreg, "adjusted fuse corner %d open-loop voltage: %d --> %d uV\n",
+ i, prev_volt, fuse_volt[i]);
+ }
+ }
+
+done:
+ kfree(volt_adjust);
+ return rc;
+}
+
+/**
+ * cpr3_adjust_open_loop_voltages() - adjust the open-loop voltages for each
+ * corner according to device tree values
+ * @vreg: Pointer to the CPR3 regulator
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_adjust_open_loop_voltages(struct cpr3_regulator *vreg)
+{
+ int i, rc, prev_volt, min_volt;
+ int *volt_adjust, *volt_diff;
+
+ if (!of_find_property(vreg->of_node,
+ "qcom,cpr-open-loop-voltage-adjustment", NULL)) {
+ /* No adjustment required. */
+ return 0;
+ }
+
+ volt_adjust = kcalloc(vreg->corner_count, sizeof(*volt_adjust),
+ GFP_KERNEL);
+ volt_diff = kcalloc(vreg->corner_count, sizeof(*volt_diff), GFP_KERNEL);
+ if (!volt_adjust || !volt_diff) {
+ rc = -ENOMEM;
+ goto done;
+ }
+
+ rc = cpr3_parse_corner_array_property(vreg,
+ "qcom,cpr-open-loop-voltage-adjustment", 1, volt_adjust);
+ if (rc) {
+ cpr3_err(vreg, "could not load open-loop voltage adjustments, rc=%d\n",
+ rc);
+ goto done;
+ }
+
+ for (i = 0; i < vreg->corner_count; i++) {
+ if (volt_adjust[i]) {
+ prev_volt = vreg->corner[i].open_loop_volt;
+ vreg->corner[i].open_loop_volt += volt_adjust[i];
+ cpr3_debug(vreg, "adjusted corner %d open-loop voltage: %d --> %d uV\n",
+ i, prev_volt, vreg->corner[i].open_loop_volt);
+ }
+ }
+
+ if (of_find_property(vreg->of_node,
+ "qcom,cpr-open-loop-voltage-min-diff", NULL)) {
+ rc = cpr3_parse_corner_array_property(vreg,
+ "qcom,cpr-open-loop-voltage-min-diff", 1, volt_diff);
+ if (rc) {
+ cpr3_err(vreg, "could not load minimum open-loop voltage differences, rc=%d\n",
+ rc);
+ goto done;
+ }
+ }
+
+ /*
+ * Ensure that open-loop voltages increase monotonically with respect
+ * to configurable minimum allowed differences.
+ */
+ for (i = 1; i < vreg->corner_count; i++) {
+ min_volt = vreg->corner[i - 1].open_loop_volt + volt_diff[i];
+ if (vreg->corner[i].open_loop_volt < min_volt) {
+ cpr3_debug(vreg, "adjusted corner %d open-loop voltage=%d uV < corner %d voltage=%d uV + min diff=%d uV; overriding: corner %d voltage=%d\n",
+ i, vreg->corner[i].open_loop_volt,
+ i - 1, vreg->corner[i - 1].open_loop_volt,
+ volt_diff[i], i, min_volt);
+ vreg->corner[i].open_loop_volt = min_volt;
+ }
+ }
+
+done:
+ kfree(volt_diff);
+ kfree(volt_adjust);
+ return rc;
+}
+
+/**
+ * cpr3_quot_adjustment() - returns the quotient adjustment value resulting from
+ * the specified voltage adjustment and RO scaling factor
+ * @ro_scale: The CPR ring oscillator (RO) scaling factor with units
+ * of QUOT/V
+ * @volt_adjust: The amount to adjust the voltage by in units of
+ * microvolts. This value may be positive or negative.
+ */
+int cpr3_quot_adjustment(int ro_scale, int volt_adjust)
+{
+ unsigned long long temp;
+ int quot_adjust;
+ int sign = 1;
+
+ if (ro_scale < 0) {
+ sign = -sign;
+ ro_scale = -ro_scale;
+ }
+
+ if (volt_adjust < 0) {
+ sign = -sign;
+ volt_adjust = -volt_adjust;
+ }
+
+ temp = (unsigned long long)ro_scale * (unsigned long long)volt_adjust;
+ do_div(temp, 1000000);
+
+ quot_adjust = temp;
+ quot_adjust *= sign;
+
+ return quot_adjust;
+}
+
+/**
+ * cpr3_voltage_adjustment() - returns the voltage adjustment value resulting
+ * from the specified quotient adjustment and RO scaling factor
+ * @ro_scale: The CPR ring oscillator (RO) scaling factor with units
+ * of QUOT/V
+ * @quot_adjust: The amount to adjust the quotient by in units of
+ * QUOT. This value may be positive or negative.
+ */
+int cpr3_voltage_adjustment(int ro_scale, int quot_adjust)
+{
+ unsigned long long temp;
+ int volt_adjust;
+ int sign = 1;
+
+ if (ro_scale < 0) {
+ sign = -sign;
+ ro_scale = -ro_scale;
+ }
+
+ if (quot_adjust < 0) {
+ sign = -sign;
+ quot_adjust = -quot_adjust;
+ }
+
+ if (ro_scale == 0)
+ return 0;
+
+ temp = (unsigned long long)quot_adjust * 1000000;
+ do_div(temp, ro_scale);
+
+ volt_adjust = temp;
+ volt_adjust *= sign;
+
+ return volt_adjust;
+}
+
+/**
+ * cpr3_parse_closed_loop_voltage_adjustments() - load per-fuse-corner and
+ * per-corner closed-loop adjustment values from device tree
+ * @vreg: Pointer to the CPR3 regulator
+ * @ro_sel: Array of ring oscillator values selected for each
+ * fuse corner
+ * @volt_adjust: Pointer to array which will be filled with the
+ * per-corner closed-loop adjustment voltages
+ * @volt_adjust_fuse: Pointer to array which will be filled with the
+ * per-fuse-corner closed-loop adjustment voltages
+ * @ro_scale: Pointer to array which will be filled with the
+ * per-fuse-corner RO scaling factor values with units of
+ * QUOT/V
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_parse_closed_loop_voltage_adjustments(
+ struct cpr3_regulator *vreg, u64 *ro_sel,
+ int *volt_adjust, int *volt_adjust_fuse, int *ro_scale)
+{
+ int i, rc;
+ u32 *ro_all_scale;
+
+ char volt_adj[] = "qcom,cpr-closed-loop-voltage-adjustment";
+ char volt_fuse_adj[] = "qcom,cpr-closed-loop-voltage-fuse-adjustment";
+ char ro_scaling[] = "qcom,cpr-ro-scaling-factor";
+
+ if (!of_find_property(vreg->of_node, volt_adj, NULL)
+ && !of_find_property(vreg->of_node, volt_fuse_adj, NULL)
+ && !vreg->aging_allowed) {
+ /* No adjustment required. */
+ return 0;
+ } else if (!of_find_property(vreg->of_node, ro_scaling, NULL)) {
+ cpr3_err(vreg, "Missing %s required for closed-loop voltage adjustment.\n",
+ ro_scaling);
+ return -EINVAL;
+ }
+
+ ro_all_scale = kcalloc(vreg->fuse_corner_count * CPR3_RO_COUNT,
+ sizeof(*ro_all_scale), GFP_KERNEL);
+ if (!ro_all_scale)
+ return -ENOMEM;
+
+ rc = cpr3_parse_array_property(vreg, ro_scaling,
+ vreg->fuse_corner_count * CPR3_RO_COUNT, ro_all_scale);
+ if (rc) {
+ cpr3_err(vreg, "could not load RO scaling factors, rc=%d\n",
+ rc);
+ goto done;
+ }
+
+ for (i = 0; i < vreg->fuse_corner_count; i++)
+ ro_scale[i] = ro_all_scale[i * CPR3_RO_COUNT + ro_sel[i]];
+
+ for (i = 0; i < vreg->corner_count; i++)
+ memcpy(vreg->corner[i].ro_scale,
+ &ro_all_scale[vreg->corner[i].cpr_fuse_corner * CPR3_RO_COUNT],
+ sizeof(*ro_all_scale) * CPR3_RO_COUNT);
+
+ if (of_find_property(vreg->of_node, volt_fuse_adj, NULL)) {
+ rc = cpr3_parse_array_property(vreg, volt_fuse_adj,
+ vreg->fuse_corner_count, volt_adjust_fuse);
+ if (rc) {
+ cpr3_err(vreg, "could not load closed-loop fused voltage adjustments, rc=%d\n",
+ rc);
+ goto done;
+ }
+ }
+
+ if (of_find_property(vreg->of_node, volt_adj, NULL)) {
+ rc = cpr3_parse_corner_array_property(vreg, volt_adj,
+ 1, volt_adjust);
+ if (rc) {
+ cpr3_err(vreg, "could not load closed-loop voltage adjustments, rc=%d\n",
+ rc);
+ goto done;
+ }
+ }
+
+done:
+ kfree(ro_all_scale);
+ return rc;
+}
+
+/**
+ * cpr3_apm_init() - initialize APM data for a CPR3 controller
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * This function loads memory array power mux (APM) data from device tree
+ * if it is present and requests a handle to the appropriate APM controller
+ * device.
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_apm_init(struct cpr3_controller *ctrl)
+{
+ struct device_node *node = ctrl->dev->of_node;
+ int rc;
+
+ if (!of_find_property(node, "qcom,apm-ctrl", NULL)) {
+ /* No APM used */
+ return 0;
+ }
+
+ ctrl->apm = msm_apm_ctrl_dev_get(ctrl->dev);
+ if (IS_ERR(ctrl->apm)) {
+ rc = PTR_ERR(ctrl->apm);
+ if (rc != -EPROBE_DEFER)
+ cpr3_err(ctrl, "APM get failed, rc=%d\n", rc);
+ return rc;
+ }
+
+ rc = of_property_read_u32(node, "qcom,apm-threshold-voltage",
+ &ctrl->apm_threshold_volt);
+ if (rc) {
+ cpr3_err(ctrl, "error reading qcom,apm-threshold-voltage, rc=%d\n",
+ rc);
+ return rc;
+ }
+ ctrl->apm_threshold_volt
+ = CPR3_ROUND(ctrl->apm_threshold_volt, ctrl->step_volt);
+
+ /* No error check since this is an optional property. */
+ of_property_read_u32(node, "qcom,apm-hysteresis-voltage",
+ &ctrl->apm_adj_volt);
+ ctrl->apm_adj_volt = CPR3_ROUND(ctrl->apm_adj_volt, ctrl->step_volt);
+
+ ctrl->apm_high_supply = MSM_APM_SUPPLY_APCC;
+ ctrl->apm_low_supply = MSM_APM_SUPPLY_MX;
+
+ return 0;
+}
+
+/**
+ * cpr3_mem_acc_init() - initialize mem-acc regulator data for
+ * a CPR3 regulator
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_mem_acc_init(struct cpr3_regulator *vreg)
+{
+ struct cpr3_controller *ctrl = vreg->thread->ctrl;
+ u32 *temp;
+ int i, rc;
+
+ if (!ctrl->mem_acc_regulator) {
+ cpr3_info(ctrl, "not using memory accelerator regulator\n");
+ return 0;
+ }
+
+ temp = kcalloc(vreg->corner_count, sizeof(*temp), GFP_KERNEL);
+ if (!temp)
+ return -ENOMEM;
+
+ rc = cpr3_parse_corner_array_property(vreg, "qcom,mem-acc-voltage",
+ 1, temp);
+ if (rc) {
+ cpr3_err(ctrl, "could not load mem-acc corners, rc=%d\n", rc);
+ } else {
+ for (i = 0; i < vreg->corner_count; i++)
+ vreg->corner[i].mem_acc_volt = temp[i];
+ }
+
+ kfree(temp);
+ return rc;
+}
+
+/**
+ * cpr4_load_core_and_temp_adj() - parse amount of voltage adjustment for
+ * per-online-core and per-temperature voltage adjustment for a
+ * given corner or corner band from device tree.
+ * @vreg: Pointer to the CPR3 regulator
+ * @num: Corner number or corner band number
+ * @use_corner_band: Boolean indicating if the CPR3 regulator supports
+ * adjustments per corner band
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr4_load_core_and_temp_adj(struct cpr3_regulator *vreg,
+ int num, bool use_corner_band)
+{
+ struct cpr3_controller *ctrl = vreg->thread->ctrl;
+ struct cpr4_sdelta *sdelta;
+ int sdelta_size, i, j, pos, rc = 0;
+ char str[75];
+ size_t buflen;
+ char *buf;
+
+ sdelta = use_corner_band ? vreg->corner_band[num].sdelta :
+ vreg->corner[num].sdelta;
+
+ if (!sdelta->allow_core_count_adj && !sdelta->allow_temp_adj) {
+ /* corner doesn't need sdelta table */
+ sdelta->max_core_count = 0;
+ sdelta->temp_band_count = 0;
+ return rc;
+ }
+
+ sdelta_size = sdelta->max_core_count * sdelta->temp_band_count;
+ if (use_corner_band)
+ snprintf(str, sizeof(str),
+ "corner_band=%d core_config_count=%d temp_band_count=%d sdelta_size=%d\n",
+ num, sdelta->max_core_count,
+ sdelta->temp_band_count, sdelta_size);
+ else
+ snprintf(str, sizeof(str),
+ "corner=%d core_config_count=%d temp_band_count=%d sdelta_size=%d\n",
+ num, sdelta->max_core_count,
+ sdelta->temp_band_count, sdelta_size);
+
+ cpr3_debug(vreg, "%s", str);
+
+ sdelta->table = devm_kcalloc(ctrl->dev, sdelta_size,
+ sizeof(*sdelta->table), GFP_KERNEL);
+ if (!sdelta->table)
+ return -ENOMEM;
+
+ if (use_corner_band)
+ snprintf(str, sizeof(str),
+ "qcom,cpr-corner-band%d-temp-core-voltage-adjustment",
+ num + CPR3_CORNER_OFFSET);
+ else
+ snprintf(str, sizeof(str),
+ "qcom,cpr-corner%d-temp-core-voltage-adjustment",
+ num + CPR3_CORNER_OFFSET);
+
+ rc = cpr3_parse_array_property(vreg, str, sdelta_size,
+ sdelta->table);
+ if (rc) {
+ cpr3_err(vreg, "could not load %s, rc=%d\n", str, rc);
+ return rc;
+ }
+
+ /*
+ * Convert sdelta margins from uV to PMIC steps and apply negation to
+ * follow the SDELTA register semantics.
+ */
+ for (i = 0; i < sdelta_size; i++)
+ sdelta->table[i] = -(sdelta->table[i] / ctrl->step_volt);
+
+ buflen = sizeof(*buf) * sdelta_size * (MAX_CHARS_PER_INT + 2);
+ buf = kzalloc(buflen, GFP_KERNEL);
+ if (!buf)
+ return rc;
+
+ for (i = 0; i < sdelta->max_core_count; i++) {
+ for (j = 0, pos = 0; j < sdelta->temp_band_count; j++)
+ pos += scnprintf(buf + pos, buflen - pos, " %u",
+ sdelta->table[i * sdelta->temp_band_count + j]);
+ cpr3_debug(vreg, "sdelta[%d]:%s\n", i, buf);
+ }
+
+ kfree(buf);
+ return rc;
+}
+
+/**
+ * cpr4_parse_core_count_temp_voltage_adj() - parse configuration data for
+ * per-online-core and per-temperature voltage adjustment for
+ * a CPR3 regulator from device tree.
+ * @vreg: Pointer to the CPR3 regulator
+ * @use_corner_band: Boolean indicating if the CPR3 regulator supports
+ * adjustments per corner band
+ *
+ * This function supports parsing of per-online-core and per-temperature
+ * adjustments per corner or per corner band. CPR controllers which support
+ * corner bands apply the same adjustments to all corners within a corner band.
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr4_parse_core_count_temp_voltage_adj(
+ struct cpr3_regulator *vreg, bool use_corner_band)
+{
+ struct cpr3_controller *ctrl = vreg->thread->ctrl;
+ struct device_node *node = vreg->of_node;
+ struct cpr3_corner *corner;
+ struct cpr4_sdelta *sdelta;
+ int i, sdelta_table_count, rc = 0;
+ int *allow_core_count_adj = NULL, *allow_temp_adj = NULL;
+ char prop_str[75];
+
+ if (of_find_property(node, use_corner_band ?
+ "qcom,corner-band-allow-temp-adjustment"
+ : "qcom,corner-allow-temp-adjustment", NULL)) {
+ if (!ctrl->allow_temp_adj) {
+ cpr3_err(ctrl, "Temperature adjustment configurations missing\n");
+ return -EINVAL;
+ }
+
+ vreg->allow_temp_adj = true;
+ }
+
+ if (of_find_property(node, use_corner_band ?
+ "qcom,corner-band-allow-core-count-adjustment"
+ : "qcom,corner-allow-core-count-adjustment",
+ NULL)) {
+ rc = of_property_read_u32(node, "qcom,max-core-count",
+ &vreg->max_core_count);
+ if (rc) {
+ cpr3_err(vreg, "error reading qcom,max-core-count, rc=%d\n",
+ rc);
+ return -EINVAL;
+ }
+
+ vreg->allow_core_count_adj = true;
+ ctrl->allow_core_count_adj = true;
+ }
+
+ if (!vreg->allow_temp_adj && !vreg->allow_core_count_adj) {
+ /*
+ * Both per-online-core and temperature based adjustments are
+ * disabled for this regulator.
+ */
+ return 0;
+ } else if (!vreg->allow_core_count_adj) {
+ /*
+ * Only per-temperature voltage adjusments are allowed.
+ * Keep max core count value as 1 to allocate SDELTA.
+ */
+ vreg->max_core_count = 1;
+ }
+
+ if (vreg->allow_core_count_adj) {
+ allow_core_count_adj = kcalloc(vreg->corner_count,
+ sizeof(*allow_core_count_adj),
+ GFP_KERNEL);
+ if (!allow_core_count_adj)
+ return -ENOMEM;
+
+ snprintf(prop_str, sizeof(prop_str), "%s", use_corner_band ?
+ "qcom,corner-band-allow-core-count-adjustment" :
+ "qcom,corner-allow-core-count-adjustment");
+
+ rc = use_corner_band ?
+ cpr3_parse_corner_band_array_property(vreg, prop_str,
+ 1, allow_core_count_adj) :
+ cpr3_parse_corner_array_property(vreg, prop_str,
+ 1, allow_core_count_adj);
+ if (rc) {
+ cpr3_err(vreg, "error reading %s, rc=%d\n", prop_str,
+ rc);
+ goto done;
+ }
+ }
+
+ if (vreg->allow_temp_adj) {
+ allow_temp_adj = kcalloc(vreg->corner_count,
+ sizeof(*allow_temp_adj), GFP_KERNEL);
+ if (!allow_temp_adj) {
+ rc = -ENOMEM;
+ goto done;
+ }
+
+ snprintf(prop_str, sizeof(prop_str), "%s", use_corner_band ?
+ "qcom,corner-band-allow-temp-adjustment" :
+ "qcom,corner-allow-temp-adjustment");
+
+ rc = use_corner_band ?
+ cpr3_parse_corner_band_array_property(vreg, prop_str,
+ 1, allow_temp_adj) :
+ cpr3_parse_corner_array_property(vreg, prop_str,
+ 1, allow_temp_adj);
+ if (rc) {
+ cpr3_err(vreg, "error reading %s, rc=%d\n", prop_str,
+ rc);
+ goto done;
+ }
+ }
+
+ sdelta_table_count = use_corner_band ? vreg->corner_band_count :
+ vreg->corner_count;
+
+ for (i = 0; i < sdelta_table_count; i++) {
+ sdelta = devm_kzalloc(ctrl->dev, sizeof(*corner->sdelta),
+ GFP_KERNEL);
+ if (!sdelta) {
+ rc = -ENOMEM;
+ goto done;
+ }
+
+ if (allow_core_count_adj)
+ sdelta->allow_core_count_adj = allow_core_count_adj[i];
+ if (allow_temp_adj)
+ sdelta->allow_temp_adj = allow_temp_adj[i];
+ sdelta->max_core_count = vreg->max_core_count;
+ sdelta->temp_band_count = ctrl->temp_band_count;
+
+ if (use_corner_band)
+ vreg->corner_band[i].sdelta = sdelta;
+ else
+ vreg->corner[i].sdelta = sdelta;
+
+ rc = cpr4_load_core_and_temp_adj(vreg, i, use_corner_band);
+ if (rc) {
+ cpr3_err(vreg, "corner/band %d core and temp adjustment loading failed, rc=%d\n",
+ i, rc);
+ goto done;
+ }
+ }
+
+done:
+ kfree(allow_core_count_adj);
+ kfree(allow_temp_adj);
+
+ return rc;
+}
+
+/**
+ * cprh_adjust_voltages_for_apm() - adjust per-corner floor and ceiling voltages
+ * so that they do not overlap the APM threshold voltage.
+ * @vreg: Pointer to the CPR3 regulator
+ *
+ * The memory array power mux (APM) must be configured for a specific supply
+ * based upon where the VDD voltage lies with respect to the APM threshold
+ * voltage. When using CPR hardware closed-loop, the voltage may vary anywhere
+ * between the floor and ceiling voltage without software notification.
+ * Therefore, it is required that the floor to ceiling range for every corner
+ * not intersect the APM threshold voltage. This function adjusts the floor to
+ * ceiling range for each corner which violates this requirement.
+ *
+ * The following algorithm is applied:
+ * if floor < threshold <= ceiling:
+ * if open_loop >= threshold, then floor = threshold - adj
+ * else ceiling = threshold - step
+ * where:
+ * adj = APM hysteresis voltage established to minimize the number of
+ * corners with artificially increased floor voltages
+ * step = voltage in microvolts of a single step of the VDD supply
+ *
+ * The open-loop voltage is also bounded by the new floor or ceiling value as
+ * needed.
+ *
+ * Return: none
+ */
+void cprh_adjust_voltages_for_apm(struct cpr3_regulator *vreg)
+{
+ struct cpr3_controller *ctrl = vreg->thread->ctrl;
+ struct cpr3_corner *corner;
+ int i, adj, threshold, prev_ceiling, prev_floor, prev_open_loop;
+
+ if (!ctrl->apm_threshold_volt) {
+ /* APM not being used. */
+ return;
+ }
+
+ ctrl->apm_threshold_volt = CPR3_ROUND(ctrl->apm_threshold_volt,
+ ctrl->step_volt);
+ ctrl->apm_adj_volt = CPR3_ROUND(ctrl->apm_adj_volt, ctrl->step_volt);
+
+ threshold = ctrl->apm_threshold_volt;
+ adj = ctrl->apm_adj_volt;
+
+ for (i = 0; i < vreg->corner_count; i++) {
+ corner = &vreg->corner[i];
+
+ if (threshold <= corner->floor_volt
+ || threshold > corner->ceiling_volt)
+ continue;
+
+ prev_floor = corner->floor_volt;
+ prev_ceiling = corner->ceiling_volt;
+ prev_open_loop = corner->open_loop_volt;
+
+ if (corner->open_loop_volt >= threshold) {
+ corner->floor_volt = max(corner->floor_volt,
+ threshold - adj);
+ if (corner->open_loop_volt < corner->floor_volt)
+ corner->open_loop_volt = corner->floor_volt;
+ } else {
+ corner->ceiling_volt = threshold - ctrl->step_volt;
+ }
+
+ if (corner->floor_volt != prev_floor
+ || corner->ceiling_volt != prev_ceiling
+ || corner->open_loop_volt != prev_open_loop)
+ cpr3_debug(vreg, "APM threshold=%d, APM adj=%d changed corner %d voltages; prev: floor=%d, ceiling=%d, open-loop=%d; new: floor=%d, ceiling=%d, open-loop=%d\n",
+ threshold, adj, i, prev_floor, prev_ceiling,
+ prev_open_loop, corner->floor_volt,
+ corner->ceiling_volt, corner->open_loop_volt);
+ }
+}
+
+/**
+ * cprh_adjust_voltages_for_mem_acc() - adjust per-corner floor and ceiling
+ * voltages so that they do not intersect the MEM ACC threshold
+ * voltage
+ * @vreg: Pointer to the CPR3 regulator
+ *
+ * The following algorithm is applied:
+ * if floor < threshold <= ceiling:
+ * if open_loop >= threshold, then floor = threshold
+ * else ceiling = threshold - step
+ * where:
+ * step = voltage in microvolts of a single step of the VDD supply
+ *
+ * The open-loop voltage is also bounded by the new floor or ceiling value as
+ * needed.
+ *
+ * Return: none
+ */
+void cprh_adjust_voltages_for_mem_acc(struct cpr3_regulator *vreg)
+{
+ struct cpr3_controller *ctrl = vreg->thread->ctrl;
+ struct cpr3_corner *corner;
+ int i, threshold, prev_ceiling, prev_floor, prev_open_loop;
+
+ if (!ctrl->mem_acc_threshold_volt) {
+ /* MEM ACC not being used. */
+ return;
+ }
+
+ ctrl->mem_acc_threshold_volt = CPR3_ROUND(ctrl->mem_acc_threshold_volt,
+ ctrl->step_volt);
+
+ threshold = ctrl->mem_acc_threshold_volt;
+
+ for (i = 0; i < vreg->corner_count; i++) {
+ corner = &vreg->corner[i];
+
+ if (threshold <= corner->floor_volt
+ || threshold > corner->ceiling_volt)
+ continue;
+
+ prev_floor = corner->floor_volt;
+ prev_ceiling = corner->ceiling_volt;
+ prev_open_loop = corner->open_loop_volt;
+
+ if (corner->open_loop_volt >= threshold) {
+ corner->floor_volt = max(corner->floor_volt, threshold);
+ if (corner->open_loop_volt < corner->floor_volt)
+ corner->open_loop_volt = corner->floor_volt;
+ } else {
+ corner->ceiling_volt = threshold - ctrl->step_volt;
+ }
+
+ if (corner->floor_volt != prev_floor
+ || corner->ceiling_volt != prev_ceiling
+ || corner->open_loop_volt != prev_open_loop)
+ cpr3_debug(vreg, "MEM ACC threshold=%d changed corner %d voltages; prev: floor=%d, ceiling=%d, open-loop=%d; new: floor=%d, ceiling=%d, open-loop=%d\n",
+ threshold, i, prev_floor, prev_ceiling,
+ prev_open_loop, corner->floor_volt,
+ corner->ceiling_volt, corner->open_loop_volt);
+ }
+}
+
+/**
+ * cpr3_apply_closed_loop_offset_voltages() - modify the closed-loop voltage
+ * adjustments by the amounts that are needed for this
+ * fuse combo
+ * @vreg: Pointer to the CPR3 regulator
+ * @volt_adjust: Array of closed-loop voltage adjustment values of length
+ * vreg->corner_count which is further adjusted based upon
+ * offset voltage fuse values.
+ * @fuse_volt_adjust: Fused closed-loop voltage adjustment values of length
+ * vreg->fuse_corner_count.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_apply_closed_loop_offset_voltages(struct cpr3_regulator *vreg,
+ int *volt_adjust, int *fuse_volt_adjust)
+{
+ u32 *corner_map;
+ int rc = 0, i;
+
+ if (!of_find_property(vreg->of_node,
+ "qcom,cpr-fused-closed-loop-voltage-adjustment-map", NULL)) {
+ /* No closed-loop offset required. */
+ return 0;
+ }
+
+ corner_map = kcalloc(vreg->corner_count, sizeof(*corner_map),
+ GFP_KERNEL);
+ if (!corner_map)
+ return -ENOMEM;
+
+ rc = cpr3_parse_corner_array_property(vreg,
+ "qcom,cpr-fused-closed-loop-voltage-adjustment-map",
+ 1, corner_map);
+ if (rc)
+ goto done;
+
+ for (i = 0; i < vreg->corner_count; i++) {
+ if (corner_map[i] == 0) {
+ continue;
+ } else if (corner_map[i] > vreg->fuse_corner_count) {
+ cpr3_err(vreg, "corner %d mapped to invalid fuse corner: %u\n",
+ i, corner_map[i]);
+ rc = -EINVAL;
+ goto done;
+ }
+
+ volt_adjust[i] += fuse_volt_adjust[corner_map[i] - 1];
+ }
+
+done:
+ kfree(corner_map);
+ return rc;
+}
+
+/**
+ * cpr3_enforce_inc_quotient_monotonicity() - Ensure that target quotients
+ * increase monotonically from lower to higher corners
+ * @vreg: Pointer to the CPR3 regulator
+ *
+ * Return: 0 on success, errno on failure
+ */
+static void cpr3_enforce_inc_quotient_monotonicity(struct cpr3_regulator *vreg)
+{
+ int i, j;
+
+ for (i = 1; i < vreg->corner_count; i++) {
+ for (j = 0; j < CPR3_RO_COUNT; j++) {
+ if (vreg->corner[i].target_quot[j]
+ && vreg->corner[i].target_quot[j]
+ < vreg->corner[i - 1].target_quot[j]) {
+ cpr3_debug(vreg, "corner %d RO%u target quot=%u < corner %d RO%u target quot=%u; overriding: corner %d RO%u target quot=%u\n",
+ i, j,
+ vreg->corner[i].target_quot[j],
+ i - 1, j,
+ vreg->corner[i - 1].target_quot[j],
+ i, j,
+ vreg->corner[i - 1].target_quot[j]);
+ vreg->corner[i].target_quot[j]
+ = vreg->corner[i - 1].target_quot[j];
+ }
+ }
+ }
+}
+
+/**
+ * cpr3_enforce_dec_quotient_monotonicity() - Ensure that target quotients
+ * decrease monotonically from higher to lower corners
+ * @vreg: Pointer to the CPR3 regulator
+ *
+ * Return: 0 on success, errno on failure
+ */
+static void cpr3_enforce_dec_quotient_monotonicity(struct cpr3_regulator *vreg)
+{
+ int i, j;
+
+ for (i = vreg->corner_count - 2; i >= 0; i--) {
+ for (j = 0; j < CPR3_RO_COUNT; j++) {
+ if (vreg->corner[i + 1].target_quot[j]
+ && vreg->corner[i].target_quot[j]
+ > vreg->corner[i + 1].target_quot[j]) {
+ cpr3_debug(vreg, "corner %d RO%u target quot=%u > corner %d RO%u target quot=%u; overriding: corner %d RO%u target quot=%u\n",
+ i, j,
+ vreg->corner[i].target_quot[j],
+ i + 1, j,
+ vreg->corner[i + 1].target_quot[j],
+ i, j,
+ vreg->corner[i + 1].target_quot[j]);
+ vreg->corner[i].target_quot[j]
+ = vreg->corner[i + 1].target_quot[j];
+ }
+ }
+ }
+}
+
+/**
+ * _cpr3_adjust_target_quotients() - adjust the target quotients for each
+ * corner of the regulator according to input adjustment and
+ * scaling arrays
+ * @vreg: Pointer to the CPR3 regulator
+ * @volt_adjust: Pointer to an array of closed-loop voltage adjustments
+ * with units of microvolts. The array must have
+ * vreg->corner_count number of elements.
+ * @ro_scale: Pointer to a flattened 2D array of RO scaling factors.
+ * The array must have an inner dimension of CPR3_RO_COUNT
+ * and an outer dimension of vreg->corner_count
+ * @label: Null terminated string providing a label for the type
+ * of adjustment.
+ *
+ * Return: true if any corners received a positive voltage adjustment (> 0),
+ * else false
+ */
+static bool _cpr3_adjust_target_quotients(struct cpr3_regulator *vreg,
+ const int *volt_adjust, const int *ro_scale, const char *label)
+{
+ int i, j, quot_adjust;
+ bool is_increasing = false;
+ u32 prev_quot;
+
+ for (i = 0; i < vreg->corner_count; i++) {
+ for (j = 0; j < CPR3_RO_COUNT; j++) {
+ if (vreg->corner[i].target_quot[j]) {
+ quot_adjust = cpr3_quot_adjustment(
+ ro_scale[i * CPR3_RO_COUNT + j],
+ volt_adjust[i]);
+ if (quot_adjust) {
+ prev_quot = vreg->corner[i].
+ target_quot[j];
+ vreg->corner[i].target_quot[j]
+ += quot_adjust;
+ cpr3_debug(vreg, "adjusted corner %d RO%d target quot %s: %u --> %u (%d uV)\n",
+ i, j, label, prev_quot,
+ vreg->corner[i].target_quot[j],
+ volt_adjust[i]);
+ }
+ }
+ }
+ if (volt_adjust[i] > 0)
+ is_increasing = true;
+ }
+
+ return is_increasing;
+}
+
+/**
+ * cpr3_adjust_target_quotients() - adjust the target quotients for each
+ * corner according to device tree values and fuse values
+ * @vreg: Pointer to the CPR3 regulator
+ * @fuse_volt_adjust: Fused closed-loop voltage adjustment values of length
+ * vreg->fuse_corner_count. This parameter could be null
+ * pointer when no fused adjustments are needed.
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_adjust_target_quotients(struct cpr3_regulator *vreg,
+ int *fuse_volt_adjust)
+{
+ int i, rc;
+ int *volt_adjust, *ro_scale;
+ bool explicit_adjustment, fused_adjustment, is_increasing;
+
+ explicit_adjustment = of_find_property(vreg->of_node,
+ "qcom,cpr-closed-loop-voltage-adjustment", NULL);
+ fused_adjustment = of_find_property(vreg->of_node,
+ "qcom,cpr-fused-closed-loop-voltage-adjustment-map", NULL);
+
+ if (!explicit_adjustment && !fused_adjustment && !vreg->aging_allowed) {
+ /* No adjustment required. */
+ return 0;
+ } else if (!of_find_property(vreg->of_node,
+ "qcom,cpr-ro-scaling-factor", NULL)) {
+ cpr3_err(vreg, "qcom,cpr-ro-scaling-factor is required for closed-loop voltage adjustment, but is missing\n");
+ return -EINVAL;
+ }
+
+ volt_adjust = kcalloc(vreg->corner_count, sizeof(*volt_adjust),
+ GFP_KERNEL);
+ ro_scale = kcalloc(vreg->corner_count * CPR3_RO_COUNT,
+ sizeof(*ro_scale), GFP_KERNEL);
+ if (!volt_adjust || !ro_scale) {
+ rc = -ENOMEM;
+ goto done;
+ }
+
+ rc = cpr3_parse_corner_array_property(vreg,
+ "qcom,cpr-ro-scaling-factor", CPR3_RO_COUNT, ro_scale);
+ if (rc) {
+ cpr3_err(vreg, "could not load RO scaling factors, rc=%d\n",
+ rc);
+ goto done;
+ }
+
+ for (i = 0; i < vreg->corner_count; i++)
+ memcpy(vreg->corner[i].ro_scale, &ro_scale[i * CPR3_RO_COUNT],
+ sizeof(*ro_scale) * CPR3_RO_COUNT);
+
+ if (explicit_adjustment) {
+ rc = cpr3_parse_corner_array_property(vreg,
+ "qcom,cpr-closed-loop-voltage-adjustment",
+ 1, volt_adjust);
+ if (rc) {
+ cpr3_err(vreg, "could not load closed-loop voltage adjustments, rc=%d\n",
+ rc);
+ goto done;
+ }
+
+ _cpr3_adjust_target_quotients(vreg, volt_adjust, ro_scale,
+ "from DT");
+ cpr3_enforce_inc_quotient_monotonicity(vreg);
+ }
+
+ if (fused_adjustment && fuse_volt_adjust) {
+ memset(volt_adjust, 0,
+ sizeof(*volt_adjust) * vreg->corner_count);
+
+ rc = cpr3_apply_closed_loop_offset_voltages(vreg, volt_adjust,
+ fuse_volt_adjust);
+ if (rc) {
+ cpr3_err(vreg, "could not apply fused closed-loop voltage reductions, rc=%d\n",
+ rc);
+ goto done;
+ }
+
+ is_increasing = _cpr3_adjust_target_quotients(vreg, volt_adjust,
+ ro_scale, "from fuse");
+ if (is_increasing)
+ cpr3_enforce_inc_quotient_monotonicity(vreg);
+ else
+ cpr3_enforce_dec_quotient_monotonicity(vreg);
+ }
+
+done:
+ kfree(volt_adjust);
+ kfree(ro_scale);
+ return rc;
+}
--- /dev/null
+++ b/drivers/regulator/cpr4-apss-regulator.c
@@ -0,0 +1,1819 @@
+/*
+ * Copyright (c) 2015-2016, The Linux Foundation. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 and
+ * only version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ */
+
+#define pr_fmt(fmt) "%s: " fmt, __func__
+
+#include <linux/bitops.h>
+#include <linux/debugfs.h>
+#include <linux/err.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/kernel.h>
+#include <linux/list.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/platform_device.h>
+#include <linux/pm_opp.h>
+#include <linux/slab.h>
+#include <linux/string.h>
+#include <linux/uaccess.h>
+#include <linux/regulator/driver.h>
+#include <linux/regulator/machine.h>
+#include <linux/regulator/of_regulator.h>
+
+#include "cpr3-regulator.h"
+
+#define IPQ807x_APSS_FUSE_CORNERS 4
+#define IPQ817x_APPS_FUSE_CORNERS 2
+#define IPQ6018_APSS_FUSE_CORNERS 4
+#define IPQ9574_APSS_FUSE_CORNERS 4
+
+u32 g_valid_fuse_count = IPQ807x_APSS_FUSE_CORNERS;
+
+/**
+ * struct cpr4_ipq807x_apss_fuses - APSS specific fuse data for IPQ807x
+ * @ro_sel: Ring oscillator select fuse parameter value for each
+ * fuse corner
+ * @init_voltage: Initial (i.e. open-loop) voltage fuse parameter value
+ * for each fuse corner (raw, not converted to a voltage)
+ * @target_quot: CPR target quotient fuse parameter value for each fuse
+ * corner
+ * @quot_offset: CPR target quotient offset fuse parameter value for each
+ * fuse corner (raw, not unpacked) used for target quotient
+ * interpolation
+ * @speed_bin: Application processor speed bin fuse parameter value for
+ * the given chip
+ * @cpr_fusing_rev: CPR fusing revision fuse parameter value
+ * @boost_cfg: CPR boost configuration fuse parameter value
+ * @boost_voltage: CPR boost voltage fuse parameter value (raw, not
+ * converted to a voltage)
+ *
+ * This struct holds the values for all of the fuses read from memory.
+ */
+struct cpr4_ipq807x_apss_fuses {
+ u64 ro_sel[IPQ807x_APSS_FUSE_CORNERS];
+ u64 init_voltage[IPQ807x_APSS_FUSE_CORNERS];
+ u64 target_quot[IPQ807x_APSS_FUSE_CORNERS];
+ u64 quot_offset[IPQ807x_APSS_FUSE_CORNERS];
+ u64 speed_bin;
+ u64 cpr_fusing_rev;
+ u64 boost_cfg;
+ u64 boost_voltage;
+ u64 misc;
+};
+
+/*
+ * fuse combo = fusing revision + 8 * (speed bin)
+ * where: fusing revision = 0 - 7 and speed bin = 0 - 7
+ */
+#define CPR4_IPQ807x_APSS_FUSE_COMBO_COUNT 64
+
+/*
+ * Constants which define the name of each fuse corner.
+ */
+enum cpr4_ipq807x_apss_fuse_corner {
+ CPR4_IPQ807x_APSS_FUSE_CORNER_SVS = 0,
+ CPR4_IPQ807x_APSS_FUSE_CORNER_NOM = 1,
+ CPR4_IPQ807x_APSS_FUSE_CORNER_TURBO = 2,
+ CPR4_IPQ807x_APSS_FUSE_CORNER_STURBO = 3,
+};
+
+static const char * const cpr4_ipq807x_apss_fuse_corner_name[] = {
+ [CPR4_IPQ807x_APSS_FUSE_CORNER_SVS] = "SVS",
+ [CPR4_IPQ807x_APSS_FUSE_CORNER_NOM] = "NOM",
+ [CPR4_IPQ807x_APSS_FUSE_CORNER_TURBO] = "TURBO",
+ [CPR4_IPQ807x_APSS_FUSE_CORNER_STURBO] = "STURBO",
+};
+
+/*
+ * IPQ807x APSS fuse parameter locations:
+ *
+ * Structs are organized with the following dimensions:
+ * Outer: 0 to 3 for fuse corners from lowest to highest corner
+ * Inner: large enough to hold the longest set of parameter segments which
+ * fully defines a fuse parameter, +1 (for NULL termination).
+ * Each segment corresponds to a contiguous group of bits from a
+ * single fuse row. These segments are concatentated together in
+ * order to form the full fuse parameter value. The segments for
+ * a given parameter may correspond to different fuse rows.
+ */
+static struct cpr3_fuse_param
+ipq807x_apss_ro_sel_param[IPQ807x_APSS_FUSE_CORNERS][2] = {
+ {{73, 8, 11}, {} },
+ {{73, 4, 7}, {} },
+ {{73, 0, 3}, {} },
+ {{73, 12, 15}, {} },
+};
+
+static struct cpr3_fuse_param
+ipq807x_apss_init_voltage_param[IPQ807x_APSS_FUSE_CORNERS][2] = {
+ {{71, 18, 23}, {} },
+ {{71, 12, 17}, {} },
+ {{71, 6, 11}, {} },
+ {{71, 0, 5}, {} },
+};
+
+static struct cpr3_fuse_param
+ipq807x_apss_target_quot_param[IPQ807x_APSS_FUSE_CORNERS][2] = {
+ {{72, 32, 43}, {} },
+ {{72, 20, 31}, {} },
+ {{72, 8, 19}, {} },
+ {{72, 44, 55}, {} },
+};
+
+static struct cpr3_fuse_param
+ipq807x_apss_quot_offset_param[IPQ807x_APSS_FUSE_CORNERS][2] = {
+ {{} },
+ {{71, 46, 52}, {} },
+ {{71, 39, 45}, {} },
+ {{71, 32, 38}, {} },
+};
+
+static struct cpr3_fuse_param ipq807x_cpr_fusing_rev_param[] = {
+ {71, 53, 55},
+ {},
+};
+
+static struct cpr3_fuse_param ipq807x_apss_speed_bin_param[] = {
+ {36, 40, 42},
+ {},
+};
+
+static struct cpr3_fuse_param ipq807x_cpr_boost_fuse_cfg_param[] = {
+ {36, 43, 45},
+ {},
+};
+
+static struct cpr3_fuse_param ipq807x_apss_boost_fuse_volt_param[] = {
+ {71, 0, 5},
+ {},
+};
+
+static struct cpr3_fuse_param ipq807x_misc_fuse_volt_adj_param[] = {
+ {36, 54, 54},
+ {},
+};
+
+static struct cpr3_fuse_parameters ipq807x_fuse_params = {
+ .apss_ro_sel_param = ipq807x_apss_ro_sel_param,
+ .apss_init_voltage_param = ipq807x_apss_init_voltage_param,
+ .apss_target_quot_param = ipq807x_apss_target_quot_param,
+ .apss_quot_offset_param = ipq807x_apss_quot_offset_param,
+ .cpr_fusing_rev_param = ipq807x_cpr_fusing_rev_param,
+ .apss_speed_bin_param = ipq807x_apss_speed_bin_param,
+ .cpr_boost_fuse_cfg_param = ipq807x_cpr_boost_fuse_cfg_param,
+ .apss_boost_fuse_volt_param = ipq807x_apss_boost_fuse_volt_param,
+ .misc_fuse_volt_adj_param = ipq807x_misc_fuse_volt_adj_param
+};
+
+/*
+ * The number of possible values for misc fuse is
+ * 2^(#bits defined for misc fuse)
+ */
+#define IPQ807x_MISC_FUSE_VAL_COUNT BIT(1)
+
+/*
+ * Open loop voltage fuse reference voltages in microvolts for IPQ807x
+ */
+static int ipq807x_apss_fuse_ref_volt
+ [IPQ807x_APSS_FUSE_CORNERS] = {
+ 720000,
+ 864000,
+ 992000,
+ 1064000,
+};
+
+#define IPQ807x_APSS_FUSE_STEP_VOLT 8000
+#define IPQ807x_APSS_VOLTAGE_FUSE_SIZE 6
+#define IPQ807x_APSS_QUOT_OFFSET_SCALE 5
+
+#define IPQ807x_APSS_CPR_SENSOR_COUNT 6
+
+#define IPQ807x_APSS_CPR_CLOCK_RATE 19200000
+
+#define IPQ807x_APSS_MAX_TEMP_POINTS 3
+#define IPQ807x_APSS_TEMP_SENSOR_ID_START 4
+#define IPQ807x_APSS_TEMP_SENSOR_ID_END 13
+/*
+ * Boost voltage fuse reference and ceiling voltages in microvolts for
+ * IPQ807x.
+ */
+#define IPQ807x_APSS_BOOST_FUSE_REF_VOLT 1140000
+#define IPQ807x_APSS_BOOST_CEILING_VOLT 1140000
+#define IPQ807x_APSS_BOOST_FLOOR_VOLT 900000
+#define MAX_BOOST_CONFIG_FUSE_VALUE 8
+
+#define IPQ807x_APSS_CPR_SDELTA_CORE_COUNT 15
+
+#define IPQ807x_APSS_CPR_TCSR_START 8
+#define IPQ807x_APSS_CPR_TCSR_END 9
+
+/*
+ * Array of integer values mapped to each of the boost config fuse values to
+ * indicate boost enable/disable status.
+ */
+static bool boost_fuse[MAX_BOOST_CONFIG_FUSE_VALUE] = {0, 1, 1, 1, 1, 1, 1, 1};
+
+/*
+ * IPQ6018 (Few parameters are changed, remaining are same as IPQ807x)
+ */
+#define IPQ6018_APSS_FUSE_STEP_VOLT 12500
+#define IPQ6018_APSS_CPR_CLOCK_RATE 24000000
+
+static struct cpr3_fuse_param
+ipq6018_apss_ro_sel_param[IPQ6018_APSS_FUSE_CORNERS][2] = {
+ {{75, 8, 11}, {} },
+ {{75, 4, 7}, {} },
+ {{75, 0, 3}, {} },
+ {{75, 12, 15}, {} },
+};
+
+static struct cpr3_fuse_param
+ipq6018_apss_init_voltage_param[IPQ6018_APSS_FUSE_CORNERS][2] = {
+ {{73, 18, 23}, {} },
+ {{73, 12, 17}, {} },
+ {{73, 6, 11}, {} },
+ {{73, 0, 5}, {} },
+};
+
+static struct cpr3_fuse_param
+ipq6018_apss_target_quot_param[IPQ6018_APSS_FUSE_CORNERS][2] = {
+ {{74, 32, 43}, {} },
+ {{74, 20, 31}, {} },
+ {{74, 8, 19}, {} },
+ {{74, 44, 55}, {} },
+};
+
+static struct cpr3_fuse_param
+ipq6018_apss_quot_offset_param[IPQ6018_APSS_FUSE_CORNERS][2] = {
+ {{} },
+ {{73, 48, 55}, {} },
+ {{73, 40, 47}, {} },
+ {{73, 32, 39}, {} },
+};
+
+static struct cpr3_fuse_param ipq6018_cpr_fusing_rev_param[] = {
+ {75, 16, 18},
+ {},
+};
+
+static struct cpr3_fuse_param ipq6018_apss_speed_bin_param[] = {
+ {36, 40, 42},
+ {},
+};
+
+static struct cpr3_fuse_param ipq6018_cpr_boost_fuse_cfg_param[] = {
+ {36, 43, 45},
+ {},
+};
+
+static struct cpr3_fuse_param ipq6018_apss_boost_fuse_volt_param[] = {
+ {73, 0, 5},
+ {},
+};
+
+static struct cpr3_fuse_param ipq6018_misc_fuse_volt_adj_param[] = {
+ {36, 54, 54},
+ {},
+};
+
+static struct cpr3_fuse_parameters ipq6018_fuse_params = {
+ .apss_ro_sel_param = ipq6018_apss_ro_sel_param,
+ .apss_init_voltage_param = ipq6018_apss_init_voltage_param,
+ .apss_target_quot_param = ipq6018_apss_target_quot_param,
+ .apss_quot_offset_param = ipq6018_apss_quot_offset_param,
+ .cpr_fusing_rev_param = ipq6018_cpr_fusing_rev_param,
+ .apss_speed_bin_param = ipq6018_apss_speed_bin_param,
+ .cpr_boost_fuse_cfg_param = ipq6018_cpr_boost_fuse_cfg_param,
+ .apss_boost_fuse_volt_param = ipq6018_apss_boost_fuse_volt_param,
+ .misc_fuse_volt_adj_param = ipq6018_misc_fuse_volt_adj_param
+};
+
+
+/*
+ * Boost voltage fuse reference and ceiling voltages in microvolts for
+ * IPQ6018.
+ */
+#define IPQ6018_APSS_BOOST_FUSE_REF_VOLT 1140000
+#define IPQ6018_APSS_BOOST_CEILING_VOLT 1140000
+#define IPQ6018_APSS_BOOST_FLOOR_VOLT 900000
+
+/*
+ * Open loop voltage fuse reference voltages in microvolts for IPQ807x
+ */
+static int ipq6018_apss_fuse_ref_volt
+ [IPQ6018_APSS_FUSE_CORNERS] = {
+ 725000,
+ 862500,
+ 987500,
+ 1062500,
+};
+
+/*
+ * IPQ6018 Memory ACC settings on TCSR
+ *
+ * Turbo_L1: write TCSR_MEM_ACC_SW_OVERRIDE_LEGACY_APC0 0x10
+ * write TCSR_CUSTOM_VDDAPC0_ACC_1 0x1
+ * Other modes: write TCSR_MEM_ACC_SW_OVERRIDE_LEGACY_APC0 0x0
+ * write TCSR_CUSTOM_VDDAPC0_ACC_1 0x0
+ *
+ */
+#define IPQ6018_APSS_MEM_ACC_TCSR_COUNT 2
+#define TCSR_MEM_ACC_SW_OVERRIDE_LEGACY_APC0 0x1946178
+#define TCSR_CUSTOM_VDDAPC0_ACC_1 0x1946124
+
+struct mem_acc_tcsr {
+ u32 phy_addr;
+ void __iomem *ioremap_addr;
+ u32 value;
+};
+
+static struct mem_acc_tcsr ipq6018_mem_acc_tcsr[IPQ6018_APSS_MEM_ACC_TCSR_COUNT] = {
+ {TCSR_MEM_ACC_SW_OVERRIDE_LEGACY_APC0, NULL, 0x10},
+ {TCSR_CUSTOM_VDDAPC0_ACC_1, NULL, 0x1},
+};
+
+/*
+ * IPQ9574 (Few parameters are changed, remaining are same as IPQ6018)
+ */
+#define IPQ9574_APSS_FUSE_STEP_VOLT 10000
+
+static struct cpr3_fuse_param
+ipq9574_apss_ro_sel_param[IPQ9574_APSS_FUSE_CORNERS][2] = {
+ {{107, 4, 7}, {} },
+ {{107, 0, 3}, {} },
+ {{106, 4, 7}, {} },
+ {{106, 0, 3}, {} },
+};
+
+static struct cpr3_fuse_param
+ipq9574_apss_init_voltage_param[IPQ9574_APSS_FUSE_CORNERS][2] = {
+ {{104, 24, 29}, {} },
+ {{104, 18, 23}, {} },
+ {{104, 12, 17}, {} },
+ {{104, 6, 11}, {} },
+};
+
+static struct cpr3_fuse_param
+ipq9574_apss_target_quot_param[IPQ9574_APSS_FUSE_CORNERS][2] = {
+ {{106, 32, 43}, {} },
+ {{106, 20, 31}, {} },
+ {{106, 8, 19}, {} },
+ {{106, 44, 55}, {} },
+};
+
+static struct cpr3_fuse_param
+ipq9574_apss_quot_offset_param[IPQ9574_APSS_FUSE_CORNERS][2] = {
+ {{} },
+ {{105, 48, 55}, {} },
+ {{105, 40, 47}, {} },
+ {{105, 32, 39}, {} },
+};
+
+static struct cpr3_fuse_param ipq9574_cpr_fusing_rev_param[] = {
+ {107, 8, 10},
+ {},
+};
+
+static struct cpr3_fuse_param ipq9574_apss_speed_bin_param[] = {
+ {0, 40, 42},
+ {},
+};
+
+static struct cpr3_fuse_param ipq9574_cpr_boost_fuse_cfg_param[] = {
+ {0, 43, 45},
+ {},
+};
+
+static struct cpr3_fuse_param ipq9574_apss_boost_fuse_volt_param[] = {
+ {104, 0, 5},
+ {},
+};
+
+static struct cpr3_fuse_param ipq9574_misc_fuse_volt_adj_param[] = {
+ {0, 54, 54},
+ {},
+};
+
+static struct cpr3_fuse_parameters ipq9574_fuse_params = {
+ .apss_ro_sel_param = ipq9574_apss_ro_sel_param,
+ .apss_init_voltage_param = ipq9574_apss_init_voltage_param,
+ .apss_target_quot_param = ipq9574_apss_target_quot_param,
+ .apss_quot_offset_param = ipq9574_apss_quot_offset_param,
+ .cpr_fusing_rev_param = ipq9574_cpr_fusing_rev_param,
+ .apss_speed_bin_param = ipq9574_apss_speed_bin_param,
+ .cpr_boost_fuse_cfg_param = ipq9574_cpr_boost_fuse_cfg_param,
+ .apss_boost_fuse_volt_param = ipq9574_apss_boost_fuse_volt_param,
+ .misc_fuse_volt_adj_param = ipq9574_misc_fuse_volt_adj_param
+};
+
+/*
+ * Open loop voltage fuse reference voltages in microvolts for IPQ9574
+ */
+static int ipq9574_apss_fuse_ref_volt
+ [IPQ9574_APSS_FUSE_CORNERS] = {
+ 725000,
+ 862500,
+ 987500,
+ 1062500,
+};
+
+/**
+ * cpr4_ipq807x_apss_read_fuse_data() - load APSS specific fuse parameter values
+ * @vreg: Pointer to the CPR3 regulator
+ *
+ * This function allocates a cpr4_ipq807x_apss_fuses struct, fills it with
+ * values read out of hardware fuses, and finally copies common fuse values
+ * into the CPR3 regulator struct.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr4_ipq807x_apss_read_fuse_data(struct cpr3_regulator *vreg)
+{
+ void __iomem *base = vreg->thread->ctrl->fuse_base;
+ struct cpr4_ipq807x_apss_fuses *fuse;
+ int i, rc;
+
+ fuse = devm_kzalloc(vreg->thread->ctrl->dev, sizeof(*fuse), GFP_KERNEL);
+ if (!fuse)
+ return -ENOMEM;
+
+ rc = cpr3_read_fuse_param(base, vreg->cpr4_regulator_data->cpr3_fuse_params->apss_speed_bin_param,
+ &fuse->speed_bin);
+ if (rc) {
+ cpr3_err(vreg, "Unable to read speed bin fuse, rc=%d\n", rc);
+ return rc;
+ }
+ cpr3_info(vreg, "speed bin = %llu\n", fuse->speed_bin);
+
+ rc = cpr3_read_fuse_param(base, vreg->cpr4_regulator_data->cpr3_fuse_params->cpr_fusing_rev_param,
+ &fuse->cpr_fusing_rev);
+ if (rc) {
+ cpr3_err(vreg, "Unable to read CPR fusing revision fuse, rc=%d\n",
+ rc);
+ return rc;
+ }
+ cpr3_info(vreg, "CPR fusing revision = %llu\n", fuse->cpr_fusing_rev);
+
+ rc = cpr3_read_fuse_param(base, vreg->cpr4_regulator_data->cpr3_fuse_params->misc_fuse_volt_adj_param,
+ &fuse->misc);
+ if (rc) {
+ cpr3_err(vreg, "Unable to read misc voltage adjustment fuse, rc=%d\n",
+ rc);
+ return rc;
+ }
+ cpr3_info(vreg, "CPR misc fuse value = %llu\n", fuse->misc);
+ if (fuse->misc >= IPQ807x_MISC_FUSE_VAL_COUNT) {
+ cpr3_err(vreg, "CPR misc fuse value = %llu, should be < %lu\n",
+ fuse->misc, IPQ807x_MISC_FUSE_VAL_COUNT);
+ return -EINVAL;
+ }
+
+ for (i = 0; i < g_valid_fuse_count; i++) {
+ rc = cpr3_read_fuse_param(base,
+ vreg->cpr4_regulator_data->cpr3_fuse_params->apss_init_voltage_param[i],
+ &fuse->init_voltage[i]);
+ if (rc) {
+ cpr3_err(vreg, "Unable to read fuse-corner %d initial voltage fuse, rc=%d\n",
+ i, rc);
+ return rc;
+ }
+
+ rc = cpr3_read_fuse_param(base,
+ vreg->cpr4_regulator_data->cpr3_fuse_params->apss_target_quot_param[i],
+ &fuse->target_quot[i]);
+ if (rc) {
+ cpr3_err(vreg, "Unable to read fuse-corner %d target quotient fuse, rc=%d\n",
+ i, rc);
+ return rc;
+ }
+
+ rc = cpr3_read_fuse_param(base,
+ vreg->cpr4_regulator_data->cpr3_fuse_params->apss_ro_sel_param[i],
+ &fuse->ro_sel[i]);
+ if (rc) {
+ cpr3_err(vreg, "Unable to read fuse-corner %d RO select fuse, rc=%d\n",
+ i, rc);
+ return rc;
+ }
+
+ rc = cpr3_read_fuse_param(base,
+ vreg->cpr4_regulator_data->cpr3_fuse_params->apss_quot_offset_param[i],
+ &fuse->quot_offset[i]);
+ if (rc) {
+ cpr3_err(vreg, "Unable to read fuse-corner %d quotient offset fuse, rc=%d\n",
+ i, rc);
+ return rc;
+ }
+ }
+
+ rc = cpr3_read_fuse_param(base, vreg->cpr4_regulator_data->cpr3_fuse_params->cpr_boost_fuse_cfg_param,
+ &fuse->boost_cfg);
+ if (rc) {
+ cpr3_err(vreg, "Unable to read CPR boost config fuse, rc=%d\n",
+ rc);
+ return rc;
+ }
+ cpr3_info(vreg, "Voltage boost fuse config = %llu boost = %s\n",
+ fuse->boost_cfg, boost_fuse[fuse->boost_cfg]
+ ? "enable" : "disable");
+
+ rc = cpr3_read_fuse_param(base,
+ vreg->cpr4_regulator_data->cpr3_fuse_params->apss_boost_fuse_volt_param,
+ &fuse->boost_voltage);
+ if (rc) {
+ cpr3_err(vreg, "failed to read boost fuse voltage, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ vreg->fuse_combo = fuse->cpr_fusing_rev + 8 * fuse->speed_bin;
+ if (vreg->fuse_combo >= CPR4_IPQ807x_APSS_FUSE_COMBO_COUNT) {
+ cpr3_err(vreg, "invalid CPR fuse combo = %d found\n",
+ vreg->fuse_combo);
+ return -EINVAL;
+ }
+
+ vreg->speed_bin_fuse = fuse->speed_bin;
+ vreg->cpr_rev_fuse = fuse->cpr_fusing_rev;
+ vreg->fuse_corner_count = g_valid_fuse_count;
+ vreg->platform_fuses = fuse;
+
+ return 0;
+}
+
+/**
+ * cpr4_apss_parse_corner_data() - parse APSS corner data from device tree
+ * properties of the CPR3 regulator's device node
+ * @vreg: Pointer to the CPR3 regulator
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr4_apss_parse_corner_data(struct cpr3_regulator *vreg)
+{
+ struct device_node *node = vreg->of_node;
+ struct cpr4_ipq807x_apss_fuses *fuse = vreg->platform_fuses;
+ u32 *temp = NULL;
+ int i, rc;
+
+ rc = cpr3_parse_common_corner_data(vreg);
+ if (rc) {
+ cpr3_err(vreg, "error reading corner data, rc=%d\n", rc);
+ return rc;
+ }
+
+ /* If fuse has incorrect RO Select values and dtsi has "qcom,cpr-ro-sel"
+ * entry with RO select values other than zero, then dtsi values will
+ * be used.
+ */
+ if (of_find_property(node, "qcom,cpr-ro-sel", NULL)) {
+ temp = kcalloc(vreg->fuse_corner_count, sizeof(*temp),
+ GFP_KERNEL);
+ if (!temp)
+ return -ENOMEM;
+
+ rc = cpr3_parse_array_property(vreg, "qcom,cpr-ro-sel",
+ vreg->fuse_corner_count, temp);
+ if (rc)
+ goto done;
+
+ for (i = 0; i < vreg->fuse_corner_count; i++) {
+ if (temp[i] != 0)
+ fuse->ro_sel[i] = temp[i];
+ }
+ }
+done:
+ kfree(temp);
+ return rc;
+}
+
+/**
+ * cpr4_apss_parse_misc_fuse_voltage_adjustments() - fill an array from a
+ * portion of the voltage adjustments specified based on
+ * miscellaneous fuse bits.
+ * @vreg: Pointer to the CPR3 regulator
+ * @volt_adjust: Voltage adjustment output data array which must be
+ * of size vreg->corner_count
+ *
+ * cpr3_parse_common_corner_data() must be called for vreg before this function
+ * is called so that speed bin size elements are initialized.
+ *
+ * Two formats are supported for the device tree property:
+ * 1. Length == tuple_list_size * vreg->corner_count
+ * (reading begins at index 0)
+ * 2. Length == tuple_list_size * vreg->speed_bin_corner_sum
+ * (reading begins at index tuple_list_size * vreg->speed_bin_offset)
+ *
+ * Here, tuple_list_size is the number of possible values for misc fuse.
+ * All other property lengths are treated as errors.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr4_apss_parse_misc_fuse_voltage_adjustments(
+ struct cpr3_regulator *vreg, u32 *volt_adjust)
+{
+ struct device_node *node = vreg->of_node;
+ struct cpr4_ipq807x_apss_fuses *fuse = vreg->platform_fuses;
+ int tuple_list_size = IPQ807x_MISC_FUSE_VAL_COUNT;
+ int i, offset, rc, len = 0;
+ const char *prop_name = "qcom,cpr-misc-fuse-voltage-adjustment";
+
+ if (!of_find_property(node, prop_name, &len)) {
+ cpr3_err(vreg, "property %s is missing\n", prop_name);
+ return -EINVAL;
+ }
+
+ if (len == tuple_list_size * vreg->corner_count * sizeof(u32)) {
+ offset = 0;
+ } else if (vreg->speed_bin_corner_sum > 0 &&
+ len == tuple_list_size * vreg->speed_bin_corner_sum
+ * sizeof(u32)) {
+ offset = tuple_list_size * vreg->speed_bin_offset
+ + fuse->misc * vreg->corner_count;
+ } else {
+ if (vreg->speed_bin_corner_sum > 0)
+ cpr3_err(vreg, "property %s has invalid length=%d, should be %zu or %zu\n",
+ prop_name, len,
+ tuple_list_size * vreg->corner_count
+ * sizeof(u32),
+ tuple_list_size * vreg->speed_bin_corner_sum
+ * sizeof(u32));
+ else
+ cpr3_err(vreg, "property %s has invalid length=%d, should be %zu\n",
+ prop_name, len,
+ tuple_list_size * vreg->corner_count
+ * sizeof(u32));
+ return -EINVAL;
+ }
+
+ for (i = 0; i < vreg->corner_count; i++) {
+ rc = of_property_read_u32_index(node, prop_name, offset + i,
+ &volt_adjust[i]);
+ if (rc) {
+ cpr3_err(vreg, "error reading property %s, rc=%d\n",
+ prop_name, rc);
+ return rc;
+ }
+ }
+
+ return 0;
+}
+
+/**
+ * cpr4_ipq807x_apss_calculate_open_loop_voltages() - calculate the open-loop
+ * voltage for each corner of a CPR3 regulator
+ * @vreg: Pointer to the CPR3 regulator
+ *
+ * If open-loop voltage interpolation is allowed in device tree, then
+ * this function calculates the open-loop voltage for a given corner using
+ * linear interpolation. This interpolation is performed using the processor
+ * frequencies of the lower and higher Fmax corners along with their fused
+ * open-loop voltages.
+ *
+ * If open-loop voltage interpolation is not allowed, then this function uses
+ * the Fmax fused open-loop voltage for all of the corners associated with a
+ * given fuse corner.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr4_ipq807x_apss_calculate_open_loop_voltages(
+ struct cpr3_regulator *vreg)
+{
+ struct device_node *node = vreg->of_node;
+ struct cpr4_ipq807x_apss_fuses *fuse = vreg->platform_fuses;
+ struct cpr3_controller *ctrl = vreg->thread->ctrl;
+ int i, j, rc = 0;
+ bool allow_interpolation;
+ u64 freq_low, volt_low, freq_high, volt_high;
+ int *fuse_volt, *misc_adj_volt;
+ int *fmax_corner;
+
+ fuse_volt = kcalloc(vreg->fuse_corner_count, sizeof(*fuse_volt),
+ GFP_KERNEL);
+ fmax_corner = kcalloc(vreg->fuse_corner_count, sizeof(*fmax_corner),
+ GFP_KERNEL);
+ if (!fuse_volt || !fmax_corner) {
+ rc = -ENOMEM;
+ goto done;
+ }
+
+ for (i = 0; i < vreg->fuse_corner_count; i++) {
+ if (ctrl->cpr_global_setting == CPR_DISABLED)
+ fuse_volt[i] = vreg->cpr4_regulator_data->fuse_ref_volt[i];
+ else
+ fuse_volt[i] = cpr3_convert_open_loop_voltage_fuse(
+ vreg->cpr4_regulator_data->fuse_ref_volt[i],
+ vreg->cpr4_regulator_data->fuse_step_volt,
+ fuse->init_voltage[i],
+ IPQ807x_APSS_VOLTAGE_FUSE_SIZE);
+
+ /* Log fused open-loop voltage values for debugging purposes. */
+ cpr3_info(vreg, "fused %8s: open-loop=%7d uV\n",
+ cpr4_ipq807x_apss_fuse_corner_name[i],
+ fuse_volt[i]);
+ }
+
+ rc = cpr3_determine_part_type(vreg,
+ fuse_volt[vreg->fuse_corner_count - 1]);
+ if (rc) {
+ cpr3_err(vreg, "fused part type detection failed failed, rc=%d\n",
+ rc);
+ goto done;
+ }
+
+ rc = cpr3_adjust_fused_open_loop_voltages(vreg, fuse_volt);
+ if (rc) {
+ cpr3_err(vreg, "fused open-loop voltage adjustment failed, rc=%d\n",
+ rc);
+ goto done;
+ }
+
+ allow_interpolation = of_property_read_bool(node,
+ "qcom,allow-voltage-interpolation");
+
+ for (i = 1; i < vreg->fuse_corner_count; i++) {
+ if (fuse_volt[i] < fuse_volt[i - 1]) {
+ cpr3_info(vreg, "fuse corner %d voltage=%d uV < fuse corner %d voltage=%d uV; overriding: fuse corner %d voltage=%d\n",
+ i, fuse_volt[i], i - 1, fuse_volt[i - 1],
+ i, fuse_volt[i - 1]);
+ fuse_volt[i] = fuse_volt[i - 1];
+ }
+ }
+
+ if (!allow_interpolation) {
+ /* Use fused open-loop voltage for lower frequencies. */
+ for (i = 0; i < vreg->corner_count; i++)
+ vreg->corner[i].open_loop_volt
+ = fuse_volt[vreg->corner[i].cpr_fuse_corner];
+ goto done;
+ }
+
+ /* Determine highest corner mapped to each fuse corner */
+ j = vreg->fuse_corner_count - 1;
+ for (i = vreg->corner_count - 1; i >= 0; i--) {
+ if (vreg->corner[i].cpr_fuse_corner == j) {
+ fmax_corner[j] = i;
+ j--;
+ }
+ }
+ if (j >= 0) {
+ cpr3_err(vreg, "invalid fuse corner mapping\n");
+ rc = -EINVAL;
+ goto done;
+ }
+
+ /*
+ * Interpolation is not possible for corners mapped to the lowest fuse
+ * corner so use the fuse corner value directly.
+ */
+ for (i = 0; i <= fmax_corner[0]; i++)
+ vreg->corner[i].open_loop_volt = fuse_volt[0];
+
+ /* Interpolate voltages for the higher fuse corners. */
+ for (i = 1; i < vreg->fuse_corner_count; i++) {
+ freq_low = vreg->corner[fmax_corner[i - 1]].proc_freq;
+ volt_low = fuse_volt[i - 1];
+ freq_high = vreg->corner[fmax_corner[i]].proc_freq;
+ volt_high = fuse_volt[i];
+
+ for (j = fmax_corner[i - 1] + 1; j <= fmax_corner[i]; j++)
+ vreg->corner[j].open_loop_volt = cpr3_interpolate(
+ freq_low, volt_low, freq_high, volt_high,
+ vreg->corner[j].proc_freq);
+ }
+
+done:
+ if (rc == 0) {
+ cpr3_debug(vreg, "unadjusted per-corner open-loop voltages:\n");
+ for (i = 0; i < vreg->corner_count; i++)
+ cpr3_debug(vreg, "open-loop[%2d] = %d uV\n", i,
+ vreg->corner[i].open_loop_volt);
+
+ rc = cpr3_adjust_open_loop_voltages(vreg);
+ if (rc)
+ cpr3_err(vreg, "open-loop voltage adjustment failed, rc=%d\n",
+ rc);
+
+ if (of_find_property(node,
+ "qcom,cpr-misc-fuse-voltage-adjustment",
+ NULL)) {
+ misc_adj_volt = kcalloc(vreg->corner_count,
+ sizeof(*misc_adj_volt), GFP_KERNEL);
+ if (!misc_adj_volt) {
+ rc = -ENOMEM;
+ goto _exit;
+ }
+
+ rc = cpr4_apss_parse_misc_fuse_voltage_adjustments(vreg,
+ misc_adj_volt);
+ if (rc) {
+ cpr3_err(vreg, "qcom,cpr-misc-fuse-voltage-adjustment reading failed, rc=%d\n",
+ rc);
+ kfree(misc_adj_volt);
+ goto _exit;
+ }
+
+ for (i = 0; i < vreg->corner_count; i++)
+ vreg->corner[i].open_loop_volt
+ += misc_adj_volt[i];
+ kfree(misc_adj_volt);
+ }
+ }
+
+_exit:
+ kfree(fuse_volt);
+ kfree(fmax_corner);
+ return rc;
+}
+
+/**
+ * cpr4_ipq807x_apss_set_no_interpolation_quotients() - use the fused target
+ * quotient values for lower frequencies.
+ * @vreg: Pointer to the CPR3 regulator
+ * @volt_adjust: Pointer to array of per-corner closed-loop adjustment
+ * voltages
+ * @volt_adjust_fuse: Pointer to array of per-fuse-corner closed-loop
+ * adjustment voltages
+ * @ro_scale: Pointer to array of per-fuse-corner RO scaling factor
+ * values with units of QUOT/V
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr4_ipq807x_apss_set_no_interpolation_quotients(
+ struct cpr3_regulator *vreg, int *volt_adjust,
+ int *volt_adjust_fuse, int *ro_scale)
+{
+ struct cpr4_ipq807x_apss_fuses *fuse = vreg->platform_fuses;
+ u32 quot, ro;
+ int quot_adjust;
+ int i, fuse_corner;
+
+ for (i = 0; i < vreg->corner_count; i++) {
+ fuse_corner = vreg->corner[i].cpr_fuse_corner;
+ quot = fuse->target_quot[fuse_corner];
+ quot_adjust = cpr3_quot_adjustment(ro_scale[fuse_corner],
+ volt_adjust_fuse[fuse_corner] +
+ volt_adjust[i]);
+ ro = fuse->ro_sel[fuse_corner];
+ vreg->corner[i].target_quot[ro] = quot + quot_adjust;
+ cpr3_debug(vreg, "corner=%d RO=%u target quot=%u\n",
+ i, ro, quot);
+
+ if (quot_adjust)
+ cpr3_debug(vreg, "adjusted corner %d RO%u target quot: %u --> %u (%d uV)\n",
+ i, ro, quot, vreg->corner[i].target_quot[ro],
+ volt_adjust_fuse[fuse_corner] +
+ volt_adjust[i]);
+ }
+
+ return 0;
+}
+
+/**
+ * cpr4_ipq807x_apss_calculate_target_quotients() - calculate the CPR target
+ * quotient for each corner of a CPR3 regulator
+ * @vreg: Pointer to the CPR3 regulator
+ *
+ * If target quotient interpolation is allowed in device tree, then this
+ * function calculates the target quotient for a given corner using linear
+ * interpolation. This interpolation is performed using the processor
+ * frequencies of the lower and higher Fmax corners along with the fused
+ * target quotient and quotient offset of the higher Fmax corner.
+ *
+ * If target quotient interpolation is not allowed, then this function uses
+ * the Fmax fused target quotient for all of the corners associated with a
+ * given fuse corner.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr4_ipq807x_apss_calculate_target_quotients(
+ struct cpr3_regulator *vreg)
+{
+ struct cpr4_ipq807x_apss_fuses *fuse = vreg->platform_fuses;
+ int rc;
+ bool allow_interpolation;
+ u64 freq_low, freq_high, prev_quot;
+ u64 *quot_low;
+ u64 *quot_high;
+ u32 quot, ro;
+ int i, j, fuse_corner, quot_adjust;
+ int *fmax_corner;
+ int *volt_adjust, *volt_adjust_fuse, *ro_scale;
+ int *voltage_adj_misc;
+
+ /* Log fused quotient values for debugging purposes. */
+ for (i = CPR4_IPQ807x_APSS_FUSE_CORNER_SVS;
+ i < vreg->fuse_corner_count; i++)
+ cpr3_info(vreg, "fused %8s: quot[%2llu]=%4llu, quot_offset[%2llu]=%4llu\n",
+ cpr4_ipq807x_apss_fuse_corner_name[i],
+ fuse->ro_sel[i], fuse->target_quot[i],
+ fuse->ro_sel[i], fuse->quot_offset[i] *
+ IPQ807x_APSS_QUOT_OFFSET_SCALE);
+
+ allow_interpolation = of_property_read_bool(vreg->of_node,
+ "qcom,allow-quotient-interpolation");
+
+ volt_adjust = kcalloc(vreg->corner_count, sizeof(*volt_adjust),
+ GFP_KERNEL);
+ volt_adjust_fuse = kcalloc(vreg->fuse_corner_count,
+ sizeof(*volt_adjust_fuse), GFP_KERNEL);
+ ro_scale = kcalloc(vreg->fuse_corner_count, sizeof(*ro_scale),
+ GFP_KERNEL);
+ fmax_corner = kcalloc(vreg->fuse_corner_count, sizeof(*fmax_corner),
+ GFP_KERNEL);
+ quot_low = kcalloc(vreg->fuse_corner_count, sizeof(*quot_low),
+ GFP_KERNEL);
+ quot_high = kcalloc(vreg->fuse_corner_count, sizeof(*quot_high),
+ GFP_KERNEL);
+ if (!volt_adjust || !volt_adjust_fuse || !ro_scale ||
+ !fmax_corner || !quot_low || !quot_high) {
+ rc = -ENOMEM;
+ goto done;
+ }
+
+ rc = cpr3_parse_closed_loop_voltage_adjustments(vreg, &fuse->ro_sel[0],
+ volt_adjust, volt_adjust_fuse, ro_scale);
+ if (rc) {
+ cpr3_err(vreg, "could not load closed-loop voltage adjustments, rc=%d\n",
+ rc);
+ goto done;
+ }
+
+ if (of_find_property(vreg->of_node,
+ "qcom,cpr-misc-fuse-voltage-adjustment", NULL)) {
+ voltage_adj_misc = kcalloc(vreg->corner_count,
+ sizeof(*voltage_adj_misc), GFP_KERNEL);
+ if (!voltage_adj_misc) {
+ rc = -ENOMEM;
+ goto done;
+ }
+
+ rc = cpr4_apss_parse_misc_fuse_voltage_adjustments(vreg,
+ voltage_adj_misc);
+ if (rc) {
+ cpr3_err(vreg, "qcom,cpr-misc-fuse-voltage-adjustment reading failed, rc=%d\n",
+ rc);
+ kfree(voltage_adj_misc);
+ goto done;
+ }
+
+ for (i = 0; i < vreg->corner_count; i++)
+ volt_adjust[i] += voltage_adj_misc[i];
+
+ kfree(voltage_adj_misc);
+ }
+
+ if (!allow_interpolation) {
+ /* Use fused target quotients for lower frequencies. */
+ return cpr4_ipq807x_apss_set_no_interpolation_quotients(
+ vreg, volt_adjust, volt_adjust_fuse, ro_scale);
+ }
+
+ /* Determine highest corner mapped to each fuse corner */
+ j = vreg->fuse_corner_count - 1;
+ for (i = vreg->corner_count - 1; i >= 0; i--) {
+ if (vreg->corner[i].cpr_fuse_corner == j) {
+ fmax_corner[j] = i;
+ j--;
+ }
+ }
+ if (j >= 0) {
+ cpr3_err(vreg, "invalid fuse corner mapping\n");
+ rc = -EINVAL;
+ goto done;
+ }
+
+ /*
+ * Interpolation is not possible for corners mapped to the lowest fuse
+ * corner so use the fuse corner value directly.
+ */
+ i = CPR4_IPQ807x_APSS_FUSE_CORNER_SVS;
+ quot_adjust = cpr3_quot_adjustment(ro_scale[i], volt_adjust_fuse[i]);
+ quot = fuse->target_quot[i] + quot_adjust;
+ quot_high[i] = quot_low[i] = quot;
+ ro = fuse->ro_sel[i];
+ if (quot_adjust)
+ cpr3_debug(vreg, "adjusted fuse corner %d RO%u target quot: %llu --> %u (%d uV)\n",
+ i, ro, fuse->target_quot[i], quot, volt_adjust_fuse[i]);
+
+ for (i = 0; i <= fmax_corner[CPR4_IPQ807x_APSS_FUSE_CORNER_SVS];
+ i++)
+ vreg->corner[i].target_quot[ro] = quot;
+
+ for (i = CPR4_IPQ807x_APSS_FUSE_CORNER_NOM;
+ i < vreg->fuse_corner_count; i++) {
+ quot_high[i] = fuse->target_quot[i];
+ if (fuse->ro_sel[i] == fuse->ro_sel[i - 1])
+ quot_low[i] = quot_high[i - 1];
+ else
+ quot_low[i] = quot_high[i]
+ - fuse->quot_offset[i]
+ * IPQ807x_APSS_QUOT_OFFSET_SCALE;
+ if (quot_high[i] < quot_low[i]) {
+ cpr3_debug(vreg, "quot_high[%d]=%llu < quot_low[%d]=%llu; overriding: quot_high[%d]=%llu\n",
+ i, quot_high[i], i, quot_low[i],
+ i, quot_low[i]);
+ quot_high[i] = quot_low[i];
+ }
+ }
+
+ /* Perform per-fuse-corner target quotient adjustment */
+ for (i = 1; i < vreg->fuse_corner_count; i++) {
+ quot_adjust = cpr3_quot_adjustment(ro_scale[i],
+ volt_adjust_fuse[i]);
+ if (quot_adjust) {
+ prev_quot = quot_high[i];
+ quot_high[i] += quot_adjust;
+ cpr3_debug(vreg, "adjusted fuse corner %d RO%llu target quot: %llu --> %llu (%d uV)\n",
+ i, fuse->ro_sel[i], prev_quot, quot_high[i],
+ volt_adjust_fuse[i]);
+ }
+
+ if (fuse->ro_sel[i] == fuse->ro_sel[i - 1])
+ quot_low[i] = quot_high[i - 1];
+ else
+ quot_low[i] += cpr3_quot_adjustment(ro_scale[i],
+ volt_adjust_fuse[i - 1]);
+
+ if (quot_high[i] < quot_low[i]) {
+ cpr3_debug(vreg, "quot_high[%d]=%llu < quot_low[%d]=%llu after adjustment; overriding: quot_high[%d]=%llu\n",
+ i, quot_high[i], i, quot_low[i],
+ i, quot_low[i]);
+ quot_high[i] = quot_low[i];
+ }
+ }
+
+ /* Interpolate voltages for the higher fuse corners. */
+ for (i = 1; i < vreg->fuse_corner_count; i++) {
+ freq_low = vreg->corner[fmax_corner[i - 1]].proc_freq;
+ freq_high = vreg->corner[fmax_corner[i]].proc_freq;
+
+ ro = fuse->ro_sel[i];
+ for (j = fmax_corner[i - 1] + 1; j <= fmax_corner[i]; j++)
+ vreg->corner[j].target_quot[ro] = cpr3_interpolate(
+ freq_low, quot_low[i], freq_high, quot_high[i],
+ vreg->corner[j].proc_freq);
+ }
+
+ /* Perform per-corner target quotient adjustment */
+ for (i = 0; i < vreg->corner_count; i++) {
+ fuse_corner = vreg->corner[i].cpr_fuse_corner;
+ ro = fuse->ro_sel[fuse_corner];
+ quot_adjust = cpr3_quot_adjustment(ro_scale[fuse_corner],
+ volt_adjust[i]);
+ if (quot_adjust) {
+ prev_quot = vreg->corner[i].target_quot[ro];
+ vreg->corner[i].target_quot[ro] += quot_adjust;
+ cpr3_debug(vreg, "adjusted corner %d RO%u target quot: %llu --> %u (%d uV)\n",
+ i, ro, prev_quot,
+ vreg->corner[i].target_quot[ro],
+ volt_adjust[i]);
+ }
+ }
+
+ /* Ensure that target quotients increase monotonically */
+ for (i = 1; i < vreg->corner_count; i++) {
+ ro = fuse->ro_sel[vreg->corner[i].cpr_fuse_corner];
+ if (fuse->ro_sel[vreg->corner[i - 1].cpr_fuse_corner] == ro
+ && vreg->corner[i].target_quot[ro]
+ < vreg->corner[i - 1].target_quot[ro]) {
+ cpr3_debug(vreg, "adjusted corner %d RO%u target quot=%u < adjusted corner %d RO%u target quot=%u; overriding: corner %d RO%u target quot=%u\n",
+ i, ro, vreg->corner[i].target_quot[ro],
+ i - 1, ro, vreg->corner[i - 1].target_quot[ro],
+ i, ro, vreg->corner[i - 1].target_quot[ro]);
+ vreg->corner[i].target_quot[ro]
+ = vreg->corner[i - 1].target_quot[ro];
+ }
+ }
+
+done:
+ kfree(volt_adjust);
+ kfree(volt_adjust_fuse);
+ kfree(ro_scale);
+ kfree(fmax_corner);
+ kfree(quot_low);
+ kfree(quot_high);
+ return rc;
+}
+
+/**
+ * cpr4_apss_print_settings() - print out APSS CPR configuration settings into
+ * the kernel log for debugging purposes
+ * @vreg: Pointer to the CPR3 regulator
+ */
+static void cpr4_apss_print_settings(struct cpr3_regulator *vreg)
+{
+ struct cpr3_corner *corner;
+ int i;
+
+ cpr3_debug(vreg, "Corner: Frequency (Hz), Fuse Corner, Floor (uV), Open-Loop (uV), Ceiling (uV)\n");
+ for (i = 0; i < vreg->corner_count; i++) {
+ corner = &vreg->corner[i];
+ cpr3_debug(vreg, "%3d: %10u, %2d, %7d, %7d, %7d\n",
+ i, corner->proc_freq, corner->cpr_fuse_corner,
+ corner->floor_volt, corner->open_loop_volt,
+ corner->ceiling_volt);
+ }
+
+ if (vreg->thread->ctrl->apm)
+ cpr3_debug(vreg, "APM threshold = %d uV, APM adjust = %d uV\n",
+ vreg->thread->ctrl->apm_threshold_volt,
+ vreg->thread->ctrl->apm_adj_volt);
+}
+
+/**
+ * cpr4_apss_init_thread() - perform steps necessary to initialize the
+ * configuration data for a CPR3 thread
+ * @thread: Pointer to the CPR3 thread
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr4_apss_init_thread(struct cpr3_thread *thread)
+{
+ int rc;
+
+ rc = cpr3_parse_common_thread_data(thread);
+ if (rc) {
+ cpr3_err(thread->ctrl, "thread %u unable to read CPR thread data from device tree, rc=%d\n",
+ thread->thread_id, rc);
+ return rc;
+ }
+
+ return 0;
+}
+
+/**
+ * cpr4_apss_parse_temp_adj_properties() - parse temperature based
+ * adjustment properties from device tree.
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr4_apss_parse_temp_adj_properties(struct cpr3_controller *ctrl)
+{
+ struct device_node *of_node = ctrl->dev->of_node;
+ int rc, i, len, temp_point_count;
+
+ if (!of_find_property(of_node, "qcom,cpr-temp-point-map", &len)) {
+ /*
+ * Temperature based adjustments are not defined. Single
+ * temperature band is still valid for per-online-core
+ * adjustments.
+ */
+ ctrl->temp_band_count = 1;
+ return 0;
+ }
+
+ temp_point_count = len / sizeof(u32);
+ if (temp_point_count <= 0 ||
+ temp_point_count > IPQ807x_APSS_MAX_TEMP_POINTS) {
+ cpr3_err(ctrl, "invalid number of temperature points %d > %d (max)\n",
+ temp_point_count, IPQ807x_APSS_MAX_TEMP_POINTS);
+ return -EINVAL;
+ }
+
+ ctrl->temp_points = devm_kcalloc(ctrl->dev, temp_point_count,
+ sizeof(*ctrl->temp_points), GFP_KERNEL);
+ if (!ctrl->temp_points)
+ return -ENOMEM;
+
+ rc = of_property_read_u32_array(of_node, "qcom,cpr-temp-point-map",
+ ctrl->temp_points, temp_point_count);
+ if (rc) {
+ cpr3_err(ctrl, "error reading property qcom,cpr-temp-point-map, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ for (i = 0; i < temp_point_count; i++)
+ cpr3_debug(ctrl, "Temperature Point %d=%d\n", i,
+ ctrl->temp_points[i]);
+
+ /*
+ * If t1, t2, and t3 are the temperature points, then the temperature
+ * bands are: (-inf, t1], (t1, t2], (t2, t3], and (t3, inf).
+ */
+ ctrl->temp_band_count = temp_point_count + 1;
+ cpr3_debug(ctrl, "Number of temp bands =%d\n", ctrl->temp_band_count);
+
+ rc = of_property_read_u32(of_node, "qcom,cpr-initial-temp-band",
+ &ctrl->initial_temp_band);
+ if (rc) {
+ cpr3_err(ctrl, "error reading qcom,cpr-initial-temp-band, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ if (ctrl->initial_temp_band >= ctrl->temp_band_count) {
+ cpr3_err(ctrl, "Initial temperature band value %d should be in range [0 - %d]\n",
+ ctrl->initial_temp_band, ctrl->temp_band_count - 1);
+ return -EINVAL;
+ }
+
+ ctrl->temp_sensor_id_start = IPQ807x_APSS_TEMP_SENSOR_ID_START;
+ ctrl->temp_sensor_id_end = IPQ807x_APSS_TEMP_SENSOR_ID_END;
+ ctrl->allow_temp_adj = true;
+ return rc;
+}
+
+/**
+ * cpr4_apss_parse_boost_properties() - parse configuration data for boost
+ * voltage adjustment for CPR3 regulator from device tree.
+ * @vreg: Pointer to the CPR3 regulator
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr4_apss_parse_boost_properties(struct cpr3_regulator *vreg)
+{
+ struct cpr3_controller *ctrl = vreg->thread->ctrl;
+ struct cpr4_ipq807x_apss_fuses *fuse = vreg->platform_fuses;
+ struct cpr3_corner *corner;
+ int i, boost_voltage, final_boost_volt, rc = 0;
+ int *boost_table = NULL, *boost_temp_adj = NULL;
+ int boost_voltage_adjust = 0, boost_num_cores = 0;
+ u32 boost_allowed = 0;
+
+ if (!boost_fuse[fuse->boost_cfg])
+ /* Voltage boost is disabled in fuse */
+ return 0;
+
+ if (of_find_property(vreg->of_node, "qcom,allow-boost", NULL)) {
+ rc = cpr3_parse_array_property(vreg, "qcom,allow-boost", 1,
+ &boost_allowed);
+ if (rc)
+ return rc;
+ }
+
+ if (!boost_allowed) {
+ /* Voltage boost is not enabled for this regulator */
+ return 0;
+ }
+
+ boost_voltage = cpr3_convert_open_loop_voltage_fuse(
+ vreg->cpr4_regulator_data->boost_fuse_ref_volt,
+ vreg->cpr4_regulator_data->fuse_step_volt,
+ fuse->boost_voltage,
+ IPQ807x_APSS_VOLTAGE_FUSE_SIZE);
+
+ /* Log boost voltage value for debugging purposes. */
+ cpr3_info(vreg, "Boost open-loop=%7d uV\n", boost_voltage);
+
+ if (of_find_property(vreg->of_node,
+ "qcom,cpr-boost-voltage-fuse-adjustment", NULL)) {
+ rc = cpr3_parse_array_property(vreg,
+ "qcom,cpr-boost-voltage-fuse-adjustment",
+ 1, &boost_voltage_adjust);
+ if (rc) {
+ cpr3_err(vreg, "qcom,cpr-boost-voltage-fuse-adjustment reading failed, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ boost_voltage += boost_voltage_adjust;
+ /* Log boost voltage value for debugging purposes. */
+ cpr3_info(vreg, "Adjusted boost open-loop=%7d uV\n",
+ boost_voltage);
+ }
+
+ /* Limit boost voltage value between ceiling and floor voltage limits */
+ boost_voltage = min(boost_voltage, vreg->cpr4_regulator_data->boost_ceiling_volt);
+ boost_voltage = max(boost_voltage, vreg->cpr4_regulator_data->boost_floor_volt);
+
+ /*
+ * The boost feature can only be used for the highest voltage corner.
+ * Also, keep core-count adjustments disabled when the boost feature
+ * is enabled.
+ */
+ corner = &vreg->corner[vreg->corner_count - 1];
+ if (!corner->sdelta) {
+ /*
+ * If core-count/temp adjustments are not defined, the cpr4
+ * sdelta for this corner will not be allocated. Allocate it
+ * here for boost configuration.
+ */
+ corner->sdelta = devm_kzalloc(ctrl->dev,
+ sizeof(*corner->sdelta), GFP_KERNEL);
+ if (!corner->sdelta)
+ return -ENOMEM;
+ }
+ corner->sdelta->temp_band_count = ctrl->temp_band_count;
+
+ rc = of_property_read_u32(vreg->of_node, "qcom,cpr-num-boost-cores",
+ &boost_num_cores);
+ if (rc) {
+ cpr3_err(vreg, "qcom,cpr-num-boost-cores reading failed, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ if (boost_num_cores <= 0 ||
+ boost_num_cores > IPQ807x_APSS_CPR_SDELTA_CORE_COUNT) {
+ cpr3_err(vreg, "Invalid boost number of cores = %d\n",
+ boost_num_cores);
+ return -EINVAL;
+ }
+ corner->sdelta->boost_num_cores = boost_num_cores;
+
+ boost_table = devm_kcalloc(ctrl->dev, corner->sdelta->temp_band_count,
+ sizeof(*boost_table), GFP_KERNEL);
+ if (!boost_table)
+ return -ENOMEM;
+
+ if (of_find_property(vreg->of_node,
+ "qcom,cpr-boost-temp-adjustment", NULL)) {
+ boost_temp_adj = kcalloc(corner->sdelta->temp_band_count,
+ sizeof(*boost_temp_adj), GFP_KERNEL);
+ if (!boost_temp_adj)
+ return -ENOMEM;
+
+ rc = cpr3_parse_array_property(vreg,
+ "qcom,cpr-boost-temp-adjustment",
+ corner->sdelta->temp_band_count,
+ boost_temp_adj);
+ if (rc) {
+ cpr3_err(vreg, "qcom,cpr-boost-temp-adjustment reading failed, rc=%d\n",
+ rc);
+ goto done;
+ }
+ }
+
+ for (i = 0; i < corner->sdelta->temp_band_count; i++) {
+ /* Apply static adjustments to boost voltage */
+ final_boost_volt = boost_voltage + (boost_temp_adj == NULL
+ ? 0 : boost_temp_adj[i]);
+ /*
+ * Limit final adjusted boost voltage value between ceiling
+ * and floor voltage limits
+ */
+ final_boost_volt = min(final_boost_volt,
+ vreg->cpr4_regulator_data->boost_ceiling_volt);
+ final_boost_volt = max(final_boost_volt,
+ vreg->cpr4_regulator_data->boost_floor_volt);
+
+ boost_table[i] = (corner->open_loop_volt - final_boost_volt)
+ / ctrl->step_volt;
+ cpr3_debug(vreg, "Adjusted boost voltage margin for temp band %d = %d steps\n",
+ i, boost_table[i]);
+ }
+
+ corner->ceiling_volt = vreg->cpr4_regulator_data->boost_ceiling_volt;
+ corner->sdelta->boost_table = boost_table;
+ corner->sdelta->allow_boost = true;
+ corner->sdelta->allow_core_count_adj = false;
+ vreg->allow_boost = true;
+ ctrl->allow_boost = true;
+done:
+ kfree(boost_temp_adj);
+ return rc;
+}
+
+/**
+ * cpr4_apss_init_regulator() - perform all steps necessary to initialize the
+ * configuration data for a CPR3 regulator
+ * @vreg: Pointer to the CPR3 regulator
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr4_apss_init_regulator(struct cpr3_regulator *vreg)
+{
+ struct cpr4_ipq807x_apss_fuses *fuse;
+ int rc;
+
+ rc = cpr4_ipq807x_apss_read_fuse_data(vreg);
+ if (rc) {
+ cpr3_err(vreg, "unable to read CPR fuse data, rc=%d\n", rc);
+ return rc;
+ }
+
+ fuse = vreg->platform_fuses;
+
+ rc = cpr4_apss_parse_corner_data(vreg);
+ if (rc) {
+ cpr3_err(vreg, "unable to read CPR corner data from device tree, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ rc = cpr3_mem_acc_init(vreg);
+ if (rc) {
+ if (rc != -EPROBE_DEFER)
+ cpr3_err(vreg, "unable to initialize mem-acc regulator settings, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ rc = cpr4_ipq807x_apss_calculate_open_loop_voltages(vreg);
+ if (rc) {
+ cpr3_err(vreg, "unable to calculate open-loop voltages, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ rc = cpr3_limit_open_loop_voltages(vreg);
+ if (rc) {
+ cpr3_err(vreg, "unable to limit open-loop voltages, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ cpr3_open_loop_voltage_as_ceiling(vreg);
+
+ rc = cpr3_limit_floor_voltages(vreg);
+ if (rc) {
+ cpr3_err(vreg, "unable to limit floor voltages, rc=%d\n", rc);
+ return rc;
+ }
+
+ rc = cpr4_ipq807x_apss_calculate_target_quotients(vreg);
+ if (rc) {
+ cpr3_err(vreg, "unable to calculate target quotients, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ rc = cpr4_parse_core_count_temp_voltage_adj(vreg, false);
+ if (rc) {
+ cpr3_err(vreg, "unable to parse temperature and core count voltage adjustments, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ if (vreg->allow_core_count_adj && (vreg->max_core_count <= 0
+ || vreg->max_core_count >
+ IPQ807x_APSS_CPR_SDELTA_CORE_COUNT)) {
+ cpr3_err(vreg, "qcom,max-core-count has invalid value = %d\n",
+ vreg->max_core_count);
+ return -EINVAL;
+ }
+
+ rc = cpr4_apss_parse_boost_properties(vreg);
+ if (rc) {
+ cpr3_err(vreg, "unable to parse boost adjustments, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ cpr4_apss_print_settings(vreg);
+
+ return rc;
+}
+
+/**
+ * cpr4_apss_init_controller() - perform APSS CPR4 controller specific
+ * initializations
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr4_apss_init_controller(struct cpr3_controller *ctrl)
+{
+ int rc;
+
+ rc = cpr3_parse_common_ctrl_data(ctrl);
+ if (rc) {
+ if (rc != -EPROBE_DEFER)
+ cpr3_err(ctrl, "unable to parse common controller data, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ rc = of_property_read_u32(ctrl->dev->of_node,
+ "qcom,cpr-down-error-step-limit",
+ &ctrl->down_error_step_limit);
+ if (rc) {
+ cpr3_err(ctrl, "error reading qcom,cpr-down-error-step-limit, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ rc = of_property_read_u32(ctrl->dev->of_node,
+ "qcom,cpr-up-error-step-limit",
+ &ctrl->up_error_step_limit);
+ if (rc) {
+ cpr3_err(ctrl, "error reading qcom,cpr-up-error-step-limit, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ /*
+ * Use fixed step quotient if specified otherwise use dynamic
+ * calculated per RO step quotient
+ */
+ of_property_read_u32(ctrl->dev->of_node, "qcom,cpr-step-quot-fixed",
+ &ctrl->step_quot_fixed);
+ ctrl->use_dynamic_step_quot = ctrl->step_quot_fixed ? false : true;
+
+ ctrl->saw_use_unit_mV = of_property_read_bool(ctrl->dev->of_node,
+ "qcom,cpr-saw-use-unit-mV");
+
+ of_property_read_u32(ctrl->dev->of_node,
+ "qcom,cpr-voltage-settling-time",
+ &ctrl->voltage_settling_time);
+
+ if (of_find_property(ctrl->dev->of_node, "vdd-limit-supply", NULL)) {
+ ctrl->vdd_limit_regulator =
+ devm_regulator_get(ctrl->dev, "vdd-limit");
+ if (IS_ERR(ctrl->vdd_limit_regulator)) {
+ rc = PTR_ERR(ctrl->vdd_limit_regulator);
+ if (rc != -EPROBE_DEFER)
+ cpr3_err(ctrl, "unable to request vdd-limit regulator, rc=%d\n",
+ rc);
+ return rc;
+ }
+ }
+
+ rc = cpr3_apm_init(ctrl);
+ if (rc) {
+ if (rc != -EPROBE_DEFER)
+ cpr3_err(ctrl, "unable to initialize APM settings, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ rc = cpr4_apss_parse_temp_adj_properties(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "unable to parse temperature adjustment properties, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ ctrl->sensor_count = IPQ807x_APSS_CPR_SENSOR_COUNT;
+
+ /*
+ * APSS only has one thread (0) per controller so the zeroed
+ * array does not need further modification.
+ */
+ ctrl->sensor_owner = devm_kcalloc(ctrl->dev, ctrl->sensor_count,
+ sizeof(*ctrl->sensor_owner), GFP_KERNEL);
+ if (!ctrl->sensor_owner)
+ return -ENOMEM;
+
+ ctrl->ctrl_type = CPR_CTRL_TYPE_CPR4;
+ ctrl->supports_hw_closed_loop = false;
+ ctrl->use_hw_closed_loop = of_property_read_bool(ctrl->dev->of_node,
+ "qcom,cpr-hw-closed-loop");
+ return 0;
+}
+
+static int cpr4_apss_regulator_suspend(struct platform_device *pdev,
+ pm_message_t state)
+{
+ struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
+
+ return cpr3_regulator_suspend(ctrl);
+}
+
+static int cpr4_apss_regulator_resume(struct platform_device *pdev)
+{
+ struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
+
+ return cpr3_regulator_resume(ctrl);
+}
+
+static void ipq6018_set_mem_acc(struct regulator_dev *rdev)
+{
+ struct cpr3_regulator *vreg = rdev_get_drvdata(rdev);
+
+ ipq6018_mem_acc_tcsr[0].ioremap_addr =
+ ioremap(ipq6018_mem_acc_tcsr[0].phy_addr, 0x4);
+ ipq6018_mem_acc_tcsr[1].ioremap_addr =
+ ioremap(ipq6018_mem_acc_tcsr[1].phy_addr, 0x4);
+
+ if ((ipq6018_mem_acc_tcsr[0].ioremap_addr != NULL) &&
+ (ipq6018_mem_acc_tcsr[1].ioremap_addr != NULL) &&
+ (vreg->current_corner == (vreg->corner_count - CPR3_CORNER_OFFSET))) {
+
+ writel_relaxed(ipq6018_mem_acc_tcsr[0].value,
+ ipq6018_mem_acc_tcsr[0].ioremap_addr);
+ writel_relaxed(ipq6018_mem_acc_tcsr[1].value,
+ ipq6018_mem_acc_tcsr[1].ioremap_addr);
+ }
+}
+
+static void ipq6018_clr_mem_acc(struct regulator_dev *rdev)
+{
+ struct cpr3_regulator *vreg = rdev_get_drvdata(rdev);
+
+ if ((ipq6018_mem_acc_tcsr[0].ioremap_addr != NULL) &&
+ (ipq6018_mem_acc_tcsr[1].ioremap_addr != NULL) &&
+ (vreg->current_corner != vreg->corner_count - CPR3_CORNER_OFFSET)) {
+ writel_relaxed(0x0, ipq6018_mem_acc_tcsr[0].ioremap_addr);
+ writel_relaxed(0x0, ipq6018_mem_acc_tcsr[1].ioremap_addr);
+ }
+
+ iounmap(ipq6018_mem_acc_tcsr[0].ioremap_addr);
+ iounmap(ipq6018_mem_acc_tcsr[1].ioremap_addr);
+}
+
+static struct cpr4_mem_acc_func ipq6018_mem_acc_funcs = {
+ .set_mem_acc = ipq6018_set_mem_acc,
+ .clear_mem_acc = ipq6018_clr_mem_acc
+};
+
+static const struct cpr4_reg_data ipq807x_cpr_apss = {
+ .cpr_valid_fuse_count = IPQ807x_APSS_FUSE_CORNERS,
+ .fuse_ref_volt = ipq807x_apss_fuse_ref_volt,
+ .fuse_step_volt = IPQ807x_APSS_FUSE_STEP_VOLT,
+ .cpr_clk_rate = IPQ807x_APSS_CPR_CLOCK_RATE,
+ .boost_fuse_ref_volt= IPQ807x_APSS_BOOST_FUSE_REF_VOLT,
+ .boost_ceiling_volt= IPQ807x_APSS_BOOST_CEILING_VOLT,
+ .boost_floor_volt= IPQ807x_APSS_BOOST_FLOOR_VOLT,
+ .cpr3_fuse_params = &ipq807x_fuse_params,
+ .mem_acc_funcs = NULL,
+};
+
+static const struct cpr4_reg_data ipq817x_cpr_apss = {
+ .cpr_valid_fuse_count = IPQ817x_APPS_FUSE_CORNERS,
+ .fuse_ref_volt = ipq807x_apss_fuse_ref_volt,
+ .fuse_step_volt = IPQ807x_APSS_FUSE_STEP_VOLT,
+ .cpr_clk_rate = IPQ807x_APSS_CPR_CLOCK_RATE,
+ .boost_fuse_ref_volt= IPQ807x_APSS_BOOST_FUSE_REF_VOLT,
+ .boost_ceiling_volt= IPQ807x_APSS_BOOST_CEILING_VOLT,
+ .boost_floor_volt= IPQ807x_APSS_BOOST_FLOOR_VOLT,
+ .cpr3_fuse_params = &ipq807x_fuse_params,
+ .mem_acc_funcs = NULL,
+};
+
+static const struct cpr4_reg_data ipq6018_cpr_apss = {
+ .cpr_valid_fuse_count = IPQ6018_APSS_FUSE_CORNERS,
+ .fuse_ref_volt = ipq6018_apss_fuse_ref_volt,
+ .fuse_step_volt = IPQ6018_APSS_FUSE_STEP_VOLT,
+ .cpr_clk_rate = IPQ6018_APSS_CPR_CLOCK_RATE,
+ .boost_fuse_ref_volt = IPQ6018_APSS_BOOST_FUSE_REF_VOLT,
+ .boost_ceiling_volt = IPQ6018_APSS_BOOST_CEILING_VOLT,
+ .boost_floor_volt = IPQ6018_APSS_BOOST_FLOOR_VOLT,
+ .cpr3_fuse_params = &ipq6018_fuse_params,
+ .mem_acc_funcs = &ipq6018_mem_acc_funcs,
+};
+
+static const struct cpr4_reg_data ipq9574_cpr_apss = {
+ .cpr_valid_fuse_count = IPQ9574_APSS_FUSE_CORNERS,
+ .fuse_ref_volt = ipq9574_apss_fuse_ref_volt,
+ .fuse_step_volt = IPQ9574_APSS_FUSE_STEP_VOLT,
+ .cpr_clk_rate = IPQ6018_APSS_CPR_CLOCK_RATE,
+ .boost_fuse_ref_volt = IPQ6018_APSS_BOOST_FUSE_REF_VOLT,
+ .boost_ceiling_volt = IPQ6018_APSS_BOOST_CEILING_VOLT,
+ .boost_floor_volt = IPQ6018_APSS_BOOST_FLOOR_VOLT,
+ .cpr3_fuse_params = &ipq9574_fuse_params,
+ .mem_acc_funcs = NULL,
+};
+
+static struct of_device_id cpr4_regulator_match_table[] = {
+ {
+ .compatible = "qcom,cpr4-ipq807x-apss-regulator",
+ .data = &ipq807x_cpr_apss
+ },
+ {
+ .compatible = "qcom,cpr4-ipq817x-apss-regulator",
+ .data = &ipq817x_cpr_apss
+ },
+ {
+ .compatible = "qcom,cpr4-ipq6018-apss-regulator",
+ .data = &ipq6018_cpr_apss
+ },
+ {
+ .compatible = "qcom,cpr4-ipq9574-apss-regulator",
+ .data = &ipq9574_cpr_apss
+ },
+ {}
+};
+
+static int cpr4_apss_regulator_probe(struct platform_device *pdev)
+{
+ struct device *dev = &pdev->dev;
+ struct cpr3_controller *ctrl;
+ const struct of_device_id *match;
+ struct cpr4_reg_data *cpr_data;
+ int i, rc;
+
+ if (!dev->of_node) {
+ dev_err(dev, "Device tree node is missing\n");
+ return -EINVAL;
+ }
+
+ ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
+ if (!ctrl)
+ return -ENOMEM;
+
+ match = of_match_device(cpr4_regulator_match_table, &pdev->dev);
+ if (!match)
+ return -ENODEV;
+
+ cpr_data = (struct cpr4_reg_data *)match->data;
+ g_valid_fuse_count = cpr_data->cpr_valid_fuse_count;
+ dev_info(dev, "CPR valid fuse count: %d\n", g_valid_fuse_count);
+ ctrl->cpr_clock_rate = cpr_data->cpr_clk_rate;
+
+ ctrl->dev = dev;
+ /* Set to false later if anything precludes CPR operation. */
+ ctrl->cpr_allowed_hw = true;
+
+ rc = of_property_read_string(dev->of_node, "qcom,cpr-ctrl-name",
+ &ctrl->name);
+ if (rc) {
+ cpr3_err(ctrl, "unable to read qcom,cpr-ctrl-name, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ rc = cpr3_map_fuse_base(ctrl, pdev);
+ if (rc) {
+ cpr3_err(ctrl, "could not map fuse base address\n");
+ return rc;
+ }
+
+ rc = cpr3_read_tcsr_setting(ctrl, pdev, IPQ807x_APSS_CPR_TCSR_START,
+ IPQ807x_APSS_CPR_TCSR_END);
+ if (rc) {
+ cpr3_err(ctrl, "could not read CPR tcsr setting\n");
+ return rc;
+ }
+
+ rc = cpr3_allocate_threads(ctrl, 0, 0);
+ if (rc) {
+ cpr3_err(ctrl, "failed to allocate CPR thread array, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ if (ctrl->thread_count != 1) {
+ cpr3_err(ctrl, "expected 1 thread but found %d\n",
+ ctrl->thread_count);
+ return -EINVAL;
+ }
+
+ rc = cpr4_apss_init_controller(ctrl);
+ if (rc) {
+ if (rc != -EPROBE_DEFER)
+ cpr3_err(ctrl, "failed to initialize CPR controller parameters, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ rc = cpr4_apss_init_thread(&ctrl->thread[0]);
+ if (rc) {
+ cpr3_err(ctrl, "thread initialization failed, rc=%d\n", rc);
+ return rc;
+ }
+
+ for (i = 0; i < ctrl->thread[0].vreg_count; i++) {
+ ctrl->thread[0].vreg[i].cpr4_regulator_data = cpr_data;
+ rc = cpr4_apss_init_regulator(&ctrl->thread[0].vreg[i]);
+ if (rc) {
+ cpr3_err(&ctrl->thread[0].vreg[i], "regulator initialization failed, rc=%d\n",
+ rc);
+ return rc;
+ }
+ }
+
+ platform_set_drvdata(pdev, ctrl);
+
+ return cpr3_regulator_register(pdev, ctrl);
+}
+
+static int cpr4_apss_regulator_remove(struct platform_device *pdev)
+{
+ struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
+
+ return cpr3_regulator_unregister(ctrl);
+}
+
+static struct platform_driver cpr4_apss_regulator_driver = {
+ .driver = {
+ .name = "qcom,cpr4-apss-regulator",
+ .of_match_table = cpr4_regulator_match_table,
+ .owner = THIS_MODULE,
+ },
+ .probe = cpr4_apss_regulator_probe,
+ .remove = cpr4_apss_regulator_remove,
+ .suspend = cpr4_apss_regulator_suspend,
+ .resume = cpr4_apss_regulator_resume,
+};
+
+static int cpr4_regulator_init(void)
+{
+ return platform_driver_register(&cpr4_apss_regulator_driver);
+}
+
+static void cpr4_regulator_exit(void)
+{
+ platform_driver_unregister(&cpr4_apss_regulator_driver);
+}
+
+MODULE_DESCRIPTION("CPR4 APSS regulator driver");
+MODULE_LICENSE("GPL v2");
+
+arch_initcall(cpr4_regulator_init);
+module_exit(cpr4_regulator_exit);
--- /dev/null
+++ b/include/soc/qcom/socinfo.h
@@ -0,0 +1,463 @@
+/* Copyright (c) 2009-2014, 2016, 2020, The Linux Foundation. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 and
+ * only version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ */
+
+#ifndef _ARCH_ARM_MACH_MSM_SOCINFO_H_
+#define _ARCH_ARM_MACH_MSM_SOCINFO_H_
+
+#include <linux/of.h>
+
+#define CPU_IPQ8074 323
+#define CPU_IPQ8072 342
+#define CPU_IPQ8076 343
+#define CPU_IPQ8078 344
+#define CPU_IPQ8070 375
+#define CPU_IPQ8071 376
+
+#define CPU_IPQ8072A 389
+#define CPU_IPQ8074A 390
+#define CPU_IPQ8076A 391
+#define CPU_IPQ8078A 392
+#define CPU_IPQ8070A 395
+#define CPU_IPQ8071A 396
+
+#define CPU_IPQ8172 397
+#define CPU_IPQ8173 398
+#define CPU_IPQ8174 399
+
+#define CPU_IPQ6018 402
+#define CPU_IPQ6028 403
+#define CPU_IPQ6000 421
+#define CPU_IPQ6010 422
+#define CPU_IPQ6005 453
+
+#define CPU_IPQ5010 446
+#define CPU_IPQ5018 447
+#define CPU_IPQ5028 448
+#define CPU_IPQ5000 503
+#define CPU_IPQ0509 504
+#define CPU_IPQ0518 505
+
+#define CPU_IPQ9514 510
+#define CPU_IPQ9554 512
+#define CPU_IPQ9570 513
+#define CPU_IPQ9574 514
+#define CPU_IPQ9550 511
+#define CPU_IPQ9510 521
+
+static inline int read_ipq_soc_version_major(void)
+{
+ const int *prop;
+ prop = of_get_property(of_find_node_by_path("/"), "soc_version_major",
+ NULL);
+
+ if (!prop)
+ return -EINVAL;
+
+ return le32_to_cpu(*prop);
+}
+
+static inline int read_ipq_cpu_type(void)
+{
+ const int *prop;
+ prop = of_get_property(of_find_node_by_path("/"), "cpu_type", NULL);
+ /*
+ * Return Default CPU type if "cpu_type" property is not found in DTSI
+ */
+ if (!prop)
+ return CPU_IPQ8074;
+
+ return le32_to_cpu(*prop);
+}
+
+static inline int cpu_is_ipq8070(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ8070;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq8071(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ8071;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq8072(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ8072;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq8074(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ8074;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq8076(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ8076;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq8078(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ8078;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq8072a(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ8072A;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq8074a(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ8074A;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq8076a(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ8076A;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq8078a(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ8078A;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq8070a(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ8070A;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq8071a(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ8071A;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq8172(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ8172;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq8173(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ8173;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq8174(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ8174;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq6018(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ6018;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq6028(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ6028;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq6000(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ6000;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq6010(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ6010;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq6005(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ6005;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq5010(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ5010;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq5018(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ5018;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq5028(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ5028;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq5000(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ5000;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq0509(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ0509;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq0518(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ0518;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq9514(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ9514;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq9554(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ9554;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq9570(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ9570;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq9574(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ9574;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq9550(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ9550;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq9510(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ9510;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq807x(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return cpu_is_ipq8072() || cpu_is_ipq8074() ||
+ cpu_is_ipq8076() || cpu_is_ipq8078() ||
+ cpu_is_ipq8070() || cpu_is_ipq8071() ||
+ cpu_is_ipq8072a() || cpu_is_ipq8074a() ||
+ cpu_is_ipq8076a() || cpu_is_ipq8078a() ||
+ cpu_is_ipq8070a() || cpu_is_ipq8071a() ||
+ cpu_is_ipq8172() || cpu_is_ipq8173() ||
+ cpu_is_ipq8174();
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq60xx(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return cpu_is_ipq6018() || cpu_is_ipq6028() ||
+ cpu_is_ipq6000() || cpu_is_ipq6010() ||
+ cpu_is_ipq6005();
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq50xx(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return cpu_is_ipq5010() || cpu_is_ipq5018() ||
+ cpu_is_ipq5028() || cpu_is_ipq5000() ||
+ cpu_is_ipq0509() || cpu_is_ipq0518();
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq95xx(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return cpu_is_ipq9514() || cpu_is_ipq9554() ||
+ cpu_is_ipq9570() || cpu_is_ipq9574() ||
+ cpu_is_ipq9550() || cpu_is_ipq9510();
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_nss_crypto_enabled(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return cpu_is_ipq807x() || cpu_is_ipq60xx() ||
+ cpu_is_ipq50xx() || cpu_is_ipq9570() ||
+ cpu_is_ipq9550() || cpu_is_ipq9574() ||
+ cpu_is_ipq9554();
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_internal_wifi_enabled(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return cpu_is_ipq807x() || cpu_is_ipq60xx() ||
+ cpu_is_ipq50xx() || cpu_is_ipq9514() ||
+ cpu_is_ipq9554() || cpu_is_ipq9574();
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_uniphy1_enabled(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return cpu_is_ipq807x() || cpu_is_ipq60xx() ||
+ cpu_is_ipq9554() || cpu_is_ipq9570() ||
+ cpu_is_ipq9574() || cpu_is_ipq9550();
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_uniphy2_enabled(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return cpu_is_ipq807x() || cpu_is_ipq9570() ||
+ cpu_is_ipq9574();
+#else
+ return 0;
+#endif
+}
+
+#endif /* _ARCH_ARM_MACH_MSM_SOCINFO_H_ */