openwrt/target/linux/realtek/files-5.4/drivers/net/ethernet/rtl838x_eth.c

2202 lines
62 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/drivers/net/ethernet/rtl838x_eth.c
* Copyright (C) 2020 B. Koblitz
*/
#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/platform_device.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/of_net.h>
#include <linux/of_mdio.h>
#include <linux/module.h>
#include <linux/phylink.h>
#include <linux/pkt_sched.h>
#include <net/dsa.h>
#include <net/switchdev.h>
#include <asm/cacheflush.h>
#include <asm/mach-rtl838x/mach-rtl83xx.h>
#include "rtl838x_eth.h"
extern struct rtl83xx_soc_info soc_info;
/*
* Maximum number of RX rings is 8 on RTL83XX and 32 on the 93XX
* The ring is assigned by switch based on packet/port priortity
* Maximum number of TX rings is 2, Ring 2 being the high priority
* ring on the RTL93xx SoCs. MAX_RING_SIZE * RING_BUFFER gives
* the memory used for the ring buffer.
*/
#define MAX_RXRINGS 32
#define MAX_RXLEN 100
#define MAX_ENTRIES (200 * 8)
#define TXRINGS 2
// BUG: TXRINGLEN can be 160
#define TXRINGLEN 16
#define NOTIFY_EVENTS 10
#define NOTIFY_BLOCKS 10
#define TX_EN 0x8
#define RX_EN 0x4
#define TX_EN_93XX 0x20
#define RX_EN_93XX 0x10
#define TX_DO 0x2
#define WRAP 0x2
#define RING_BUFFER 1600
#define RTL838X_STORM_CTRL_PORT_BC_EXCEED (0x470C)
#define RTL838X_STORM_CTRL_PORT_MC_EXCEED (0x4710)
#define RTL838X_STORM_CTRL_PORT_UC_EXCEED (0x4714)
#define RTL838X_ATK_PRVNT_STS (0x5B1C)
struct p_hdr {
uint8_t *buf;
uint16_t reserved;
uint16_t size; /* buffer size */
uint16_t offset;
uint16_t len; /* pkt len */
uint16_t cpu_tag[10];
} __packed __aligned(1);
struct n_event {
uint32_t type:2;
uint32_t fidVid:12;
uint64_t mac:48;
uint32_t slp:6;
uint32_t valid:1;
uint32_t reserved:27;
} __packed __aligned(1);
struct ring_b {
uint32_t rx_r[MAX_RXRINGS][MAX_RXLEN];
uint32_t tx_r[TXRINGS][TXRINGLEN];
struct p_hdr rx_header[MAX_RXRINGS][MAX_RXLEN];
struct p_hdr tx_header[TXRINGS][TXRINGLEN];
uint32_t c_rx[MAX_RXRINGS];
uint32_t c_tx[TXRINGS];
uint8_t tx_space[TXRINGS * TXRINGLEN * RING_BUFFER];
uint8_t *rx_space;
};
struct notify_block {
struct n_event events[NOTIFY_EVENTS];
};
struct notify_b {
struct notify_block blocks[NOTIFY_BLOCKS];
u32 reserved1[8];
u32 ring[NOTIFY_BLOCKS];
u32 reserved2[8];
};
void rtl838x_create_tx_header(struct p_hdr *h, int dest_port, int prio)
{
prio &= 0x7;
if (dest_port > 0) {
// cpu_tag[0] is reserved on the RTL83XX SoCs
h->cpu_tag[1] = 0x0400;
h->cpu_tag[2] = 0x0200;
h->cpu_tag[3] = 0x0000;
h->cpu_tag[4] = BIT(dest_port) >> 16;
h->cpu_tag[5] = BIT(dest_port) & 0xffff;
// Set internal priority and AS_PRIO
if (prio >= 0)
h->cpu_tag[2] |= (prio | 0x8) << 12;
}
}
void rtl839x_create_tx_header(struct p_hdr *h, int dest_port, int prio)
{
prio &= 0x7;
if (dest_port > 0) {
// cpu_tag[0] is reserved on the RTL83XX SoCs
h->cpu_tag[1] = 0x0100;
h->cpu_tag[2] = h->cpu_tag[3] = h->cpu_tag[4] = h->cpu_tag[5] = 0;
if (dest_port >= 32) {
dest_port -= 32;
h->cpu_tag[2] = BIT(dest_port) >> 16;
h->cpu_tag[3] = BIT(dest_port) & 0xffff;
} else {
h->cpu_tag[4] = BIT(dest_port) >> 16;
h->cpu_tag[5] = BIT(dest_port) & 0xffff;
}
h->cpu_tag[6] |= BIT(21); // Enable destination port mask use
// Set internal priority and AS_PRIO
if (prio >= 0)
h->cpu_tag[1] |= prio | BIT(3);
}
}
void rtl930x_create_tx_header(struct p_hdr *h, int dest_port, int prio)
{
h->cpu_tag[0] = 0x8000;
h->cpu_tag[1] = 0; // TODO: Fill port and prio
h->cpu_tag[2] = 0;
h->cpu_tag[3] = 0;
h->cpu_tag[4] = 0;
h->cpu_tag[5] = 0;
h->cpu_tag[6] = 0;
h->cpu_tag[7] = 0xffff;
}
void rtl931x_create_tx_header(struct p_hdr *h, int dest_port, int prio)
{
h->cpu_tag[0] = 0x8000;
h->cpu_tag[1] = 0; // TODO: Fill port and prio
h->cpu_tag[2] = 0;
h->cpu_tag[3] = 0;
h->cpu_tag[4] = 0;
h->cpu_tag[5] = 0;
h->cpu_tag[6] = 0;
h->cpu_tag[7] = 0xffff;
}
struct rtl838x_rx_q {
int id;
struct rtl838x_eth_priv *priv;
struct napi_struct napi;
};
struct rtl838x_eth_priv {
struct net_device *netdev;
struct platform_device *pdev;
void *membase;
spinlock_t lock;
struct mii_bus *mii_bus;
struct rtl838x_rx_q rx_qs[MAX_RXRINGS];
struct phylink *phylink;
struct phylink_config phylink_config;
u16 id;
u16 family_id;
const struct rtl838x_reg *r;
u8 cpu_port;
u32 lastEvent;
u16 rxrings;
u16 rxringlen;
};
extern int rtl838x_phy_init(struct rtl838x_eth_priv *priv);
extern int rtl838x_read_sds_phy(int phy_addr, int phy_reg);
extern int rtl839x_read_sds_phy(int phy_addr, int phy_reg);
extern int rtl839x_write_sds_phy(int phy_addr, int phy_reg, u16 v);
extern int rtl930x_read_sds_phy(int phy_addr, int page, int phy_reg);
extern int rtl930x_write_sds_phy(int phy_addr, int page, int phy_reg, u16 v);
extern int rtl930x_read_mmd_phy(u32 port, u32 devnum, u32 regnum, u32 *val);
extern int rtl930x_write_mmd_phy(u32 port, u32 devnum, u32 regnum, u32 val);
/*
* On the RTL93XX, the RTL93XX_DMA_IF_RX_RING_CNTR track the fill level of
* the rings. Writing x into these registers substracts x from its content.
* When the content reaches the ring size, the ASIC no longer adds
* packets to this receive queue.
*/
void rtl838x_update_cntr(int r, int released)
{
// This feature is not available on RTL838x SoCs
}
void rtl839x_update_cntr(int r, int released)
{
// This feature is not available on RTL839x SoCs
}
void rtl930x_update_cntr(int r, int released)
{
int pos = (r % 3) * 10;
u32 reg = RTL930X_DMA_IF_RX_RING_CNTR + ((r / 3) << 2);
u32 v = sw_r32(reg);
v = (v >> pos) & 0x3ff;
pr_debug("RX: Work done %d, old value: %d, pos %d, reg %04x\n", released, v, pos, reg);
sw_w32_mask(0x3ff << pos, released << pos, reg);
sw_w32(v, reg);
}
void rtl931x_update_cntr(int r, int released)
{
int pos = (r % 3) * 10;
u32 reg = RTL931X_DMA_IF_RX_RING_CNTR + ((r / 3) << 2);
sw_w32_mask(0x3ff << pos, released << pos, reg);
}
struct dsa_tag {
u8 reason;
u8 queue;
u16 port;
u8 l2_offloaded;
u8 prio;
bool crc_error;
};
bool rtl838x_decode_tag(struct p_hdr *h, struct dsa_tag *t)
{
t->reason = h->cpu_tag[3] & 0xf;
t->queue = (h->cpu_tag[0] & 0xe0) >> 5;
t->port = h->cpu_tag[1] & 0x1f;
t->crc_error = t->reason == 13;
pr_debug("Reason: %d\n", t->reason);
if (t->reason != 4) // NIC_RX_REASON_SPECIAL_TRAP
t->l2_offloaded = 1;
else
t->l2_offloaded = 0;
return t->l2_offloaded;
}
bool rtl839x_decode_tag(struct p_hdr *h, struct dsa_tag *t)
{
t->reason = h->cpu_tag[4] & 0x1f;
t->queue = (h->cpu_tag[3] & 0xe000) >> 13;
t->port = h->cpu_tag[1] & 0x3f;
t->crc_error = h->cpu_tag[3] & BIT(2);
pr_debug("Reason: %d\n", t->reason);
if ((t->reason != 7) && (t->reason != 8)) // NIC_RX_REASON_RMA_USR
t->l2_offloaded = 1;
else
t->l2_offloaded = 0;
return t->l2_offloaded;
}
bool rtl930x_decode_tag(struct p_hdr *h, struct dsa_tag *t)
{
t->reason = h->cpu_tag[7] & 0x3f;
t->queue = (h->cpu_tag[2] >> 11) & 0x1f;
t->port = (h->cpu_tag[0] >> 8) & 0x1f;
t->crc_error = h->cpu_tag[1] & BIT(6);
pr_debug("Reason %d, port %d, queue %d\n", t->reason, t->port, t->queue);
if (t->reason >= 19 && t->reason <= 27)
t->l2_offloaded = 0;
else
t->l2_offloaded = 1;
return t->l2_offloaded;
}
bool rtl931x_decode_tag(struct p_hdr *h, struct dsa_tag *t)
{
t->reason = h->cpu_tag[7] & 0x3f;
t->queue = (h->cpu_tag[2] >> 11) & 0x1f;
t->port = (h->cpu_tag[0] >> 8) & 0x3f;
t->crc_error = h->cpu_tag[1] & BIT(6);
pr_debug("Reason %d, port %d, queue %d\n", t->reason, t->port, t->queue);
if (t->reason >= 19 && t->reason <= 27)
t->l2_offloaded = 0;
else
t->l2_offloaded = 1;
return t->l2_offloaded;
}
/*
* Discard the RX ring-buffers, called as part of the net-ISR
* when the buffer runs over
* Caller needs to hold priv->lock
*/
static void rtl838x_rb_cleanup(struct rtl838x_eth_priv *priv, int status)
{
int r;
u32 *last;
struct p_hdr *h;
struct ring_b *ring = priv->membase;
for (r = 0; r < priv->rxrings; r++) {
pr_debug("In %s working on r: %d\n", __func__, r);
last = (u32 *)KSEG1ADDR(sw_r32(priv->r->dma_if_rx_cur + r * 4));
do {
if ((ring->rx_r[r][ring->c_rx[r]] & 0x1))
break;
pr_debug("Got something: %d\n", ring->c_rx[r]);
h = &ring->rx_header[r][ring->c_rx[r]];
memset(h, 0, sizeof(struct p_hdr));
h->buf = (u8 *)KSEG1ADDR(ring->rx_space
+ r * priv->rxringlen * RING_BUFFER
+ ring->c_rx[r] * RING_BUFFER);
h->size = RING_BUFFER;
/* make sure the header is visible to the ASIC */
mb();
ring->rx_r[r][ring->c_rx[r]] = KSEG1ADDR(h) | 0x1
| (ring->c_rx[r] == (priv->rxringlen - 1) ? WRAP : 0x1);
ring->c_rx[r] = (ring->c_rx[r] + 1) % priv->rxringlen;
} while (&ring->rx_r[r][ring->c_rx[r]] != last);
}
}
struct fdb_update_work {
struct work_struct work;
struct net_device *ndev;
u64 macs[NOTIFY_EVENTS + 1];
};
void rtl838x_fdb_sync(struct work_struct *work)
{
const struct fdb_update_work *uw =
container_of(work, struct fdb_update_work, work);
struct switchdev_notifier_fdb_info info;
u8 addr[ETH_ALEN];
int i = 0;
int action;
while (uw->macs[i]) {
action = (uw->macs[i] & (1ULL << 63)) ? SWITCHDEV_FDB_ADD_TO_BRIDGE
: SWITCHDEV_FDB_DEL_TO_BRIDGE;
u64_to_ether_addr(uw->macs[i] & 0xffffffffffffULL, addr);
info.addr = &addr[0];
info.vid = 0;
info.offloaded = 1;
pr_debug("FDB entry %d: %llx, action %d\n", i, uw->macs[0], action);
call_switchdev_notifiers(action, uw->ndev, &info.info, NULL);
i++;
}
kfree(work);
}
static void rtl839x_l2_notification_handler(struct rtl838x_eth_priv *priv)
{
struct notify_b *nb = priv->membase + sizeof(struct ring_b);
u32 e = priv->lastEvent;
struct n_event *event;
int i;
u64 mac;
struct fdb_update_work *w;
while (!(nb->ring[e] & 1)) {
w = kzalloc(sizeof(*w), GFP_ATOMIC);
if (!w) {
pr_err("Out of memory: %s", __func__);
return;
}
INIT_WORK(&w->work, rtl838x_fdb_sync);
for (i = 0; i < NOTIFY_EVENTS; i++) {
event = &nb->blocks[e].events[i];
if (!event->valid)
continue;
mac = event->mac;
if (event->type)
mac |= 1ULL << 63;
w->ndev = priv->netdev;
w->macs[i] = mac;
}
/* Hand the ring entry back to the switch */
nb->ring[e] = nb->ring[e] | 1;
e = (e + 1) % NOTIFY_BLOCKS;
w->macs[i] = 0ULL;
schedule_work(&w->work);
}
priv->lastEvent = e;
}
static irqreturn_t rtl83xx_net_irq(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct rtl838x_eth_priv *priv = netdev_priv(dev);
u32 status = sw_r32(priv->r->dma_if_intr_sts);
bool triggered = false;
u32 atk = sw_r32(RTL838X_ATK_PRVNT_STS);
int i;
u32 storm_uc = sw_r32(RTL838X_STORM_CTRL_PORT_UC_EXCEED);
u32 storm_mc = sw_r32(RTL838X_STORM_CTRL_PORT_MC_EXCEED);
u32 storm_bc = sw_r32(RTL838X_STORM_CTRL_PORT_BC_EXCEED);
pr_debug("IRQ: %08x\n", status);
if (storm_uc || storm_mc || storm_bc) {
pr_warn("Storm control UC: %08x, MC: %08x, BC: %08x\n",
storm_uc, storm_mc, storm_bc);
sw_w32(storm_uc, RTL838X_STORM_CTRL_PORT_UC_EXCEED);
sw_w32(storm_mc, RTL838X_STORM_CTRL_PORT_MC_EXCEED);
sw_w32(storm_bc, RTL838X_STORM_CTRL_PORT_BC_EXCEED);
triggered = true;
}
if (atk) {
pr_debug("Attack prevention triggered: %08x\n", atk);
sw_w32(atk, RTL838X_ATK_PRVNT_STS);
}
spin_lock(&priv->lock);
/* Ignore TX interrupt */
if ((status & 0xf0000)) {
/* Clear ISR */
sw_w32(0x000f0000, priv->r->dma_if_intr_sts);
}
/* RX interrupt */
if (status & 0x0ff00) {
/* ACK and disable RX interrupt for this ring */
sw_w32_mask(0xff00 & status, 0, priv->r->dma_if_intr_msk);
sw_w32(0x0000ff00 & status, priv->r->dma_if_intr_sts);
for (i = 0; i < priv->rxrings; i++) {
if (status & BIT(i + 8)) {
pr_debug("Scheduling queue: %d\n", i);
napi_schedule(&priv->rx_qs[i].napi);
}
}
}
/* RX buffer overrun */
if (status & 0x000ff) {
pr_info("RX buffer overrun: status %x, mask: %x\n",
status, sw_r32(priv->r->dma_if_intr_msk));
sw_w32(status, priv->r->dma_if_intr_sts);
rtl838x_rb_cleanup(priv, status & 0xff);
}
if (priv->family_id == RTL8390_FAMILY_ID && status & 0x00100000) {
sw_w32(0x00100000, priv->r->dma_if_intr_sts);
rtl839x_l2_notification_handler(priv);
}
if (priv->family_id == RTL8390_FAMILY_ID && status & 0x00200000) {
sw_w32(0x00200000, priv->r->dma_if_intr_sts);
rtl839x_l2_notification_handler(priv);
}
if (priv->family_id == RTL8390_FAMILY_ID && status & 0x00400000) {
sw_w32(0x00400000, priv->r->dma_if_intr_sts);
rtl839x_l2_notification_handler(priv);
}
spin_unlock(&priv->lock);
return IRQ_HANDLED;
}
static irqreturn_t rtl93xx_net_irq(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct rtl838x_eth_priv *priv = netdev_priv(dev);
u32 status_rx_r = sw_r32(priv->r->dma_if_intr_rx_runout_sts);
u32 status_rx = sw_r32(priv->r->dma_if_intr_rx_done_sts);
u32 status_tx = sw_r32(priv->r->dma_if_intr_tx_done_sts);
int i;
pr_debug("In %s, status_tx: %08x, status_rx: %08x, status_rx_r: %08x\n",
__func__, status_tx, status_rx, status_rx_r);
spin_lock(&priv->lock);
/* Ignore TX interrupt */
if (status_tx) {
/* Clear ISR */
pr_debug("TX done\n");
sw_w32(status_tx, priv->r->dma_if_intr_tx_done_sts);
}
/* RX interrupt */
if (status_rx) {
pr_debug("RX IRQ\n");
/* ACK and disable RX interrupt for given rings */
sw_w32(status_rx, priv->r->dma_if_intr_rx_done_sts);
sw_w32_mask(status_rx, 0, priv->r->dma_if_intr_rx_done_msk);
for (i = 0; i < priv->rxrings; i++) {
if (status_rx & BIT(i)) {
pr_debug("Scheduling queue: %d\n", i);
napi_schedule(&priv->rx_qs[i].napi);
}
}
}
/* RX buffer overrun */
if (status_rx_r) {
pr_debug("RX buffer overrun: status %x, mask: %x\n",
status_rx_r, sw_r32(priv->r->dma_if_intr_rx_runout_msk));
sw_w32(status_rx_r, priv->r->dma_if_intr_rx_runout_sts);
rtl838x_rb_cleanup(priv, status_rx_r);
}
spin_unlock(&priv->lock);
return IRQ_HANDLED;
}
static const struct rtl838x_reg rtl838x_reg = {
.net_irq = rtl83xx_net_irq,
.mac_port_ctrl = rtl838x_mac_port_ctrl,
.dma_if_intr_sts = RTL838X_DMA_IF_INTR_STS,
.dma_if_intr_msk = RTL838X_DMA_IF_INTR_MSK,
.dma_if_ctrl = RTL838X_DMA_IF_CTRL,
.mac_force_mode_ctrl = RTL838X_MAC_FORCE_MODE_CTRL,
.dma_rx_base = RTL838X_DMA_RX_BASE,
.dma_tx_base = RTL838X_DMA_TX_BASE,
.dma_if_rx_ring_size = rtl838x_dma_if_rx_ring_size,
.dma_if_rx_ring_cntr = rtl838x_dma_if_rx_ring_cntr,
.dma_if_rx_cur = RTL838X_DMA_IF_RX_CUR,
.rst_glb_ctrl = RTL838X_RST_GLB_CTRL_0,
.get_mac_link_sts = rtl838x_get_mac_link_sts,
.get_mac_link_dup_sts = rtl838x_get_mac_link_dup_sts,
.get_mac_link_spd_sts = rtl838x_get_mac_link_spd_sts,
.get_mac_rx_pause_sts = rtl838x_get_mac_rx_pause_sts,
.get_mac_tx_pause_sts = rtl838x_get_mac_tx_pause_sts,
.mac = RTL838X_MAC,
.l2_tbl_flush_ctrl = RTL838X_L2_TBL_FLUSH_CTRL,
.update_cntr = rtl838x_update_cntr,
.create_tx_header = rtl838x_create_tx_header,
.decode_tag = rtl838x_decode_tag,
};
static const struct rtl838x_reg rtl839x_reg = {
.net_irq = rtl83xx_net_irq,
.mac_port_ctrl = rtl839x_mac_port_ctrl,
.dma_if_intr_sts = RTL839X_DMA_IF_INTR_STS,
.dma_if_intr_msk = RTL839X_DMA_IF_INTR_MSK,
.dma_if_ctrl = RTL839X_DMA_IF_CTRL,
.mac_force_mode_ctrl = RTL839X_MAC_FORCE_MODE_CTRL,
.dma_rx_base = RTL839X_DMA_RX_BASE,
.dma_tx_base = RTL839X_DMA_TX_BASE,
.dma_if_rx_ring_size = rtl839x_dma_if_rx_ring_size,
.dma_if_rx_ring_cntr = rtl839x_dma_if_rx_ring_cntr,
.dma_if_rx_cur = RTL839X_DMA_IF_RX_CUR,
.rst_glb_ctrl = RTL839X_RST_GLB_CTRL,
.get_mac_link_sts = rtl839x_get_mac_link_sts,
.get_mac_link_dup_sts = rtl839x_get_mac_link_dup_sts,
.get_mac_link_spd_sts = rtl839x_get_mac_link_spd_sts,
.get_mac_rx_pause_sts = rtl839x_get_mac_rx_pause_sts,
.get_mac_tx_pause_sts = rtl839x_get_mac_tx_pause_sts,
.mac = RTL839X_MAC,
.l2_tbl_flush_ctrl = RTL839X_L2_TBL_FLUSH_CTRL,
.update_cntr = rtl839x_update_cntr,
.create_tx_header = rtl839x_create_tx_header,
.decode_tag = rtl839x_decode_tag,
};
static const struct rtl838x_reg rtl930x_reg = {
.net_irq = rtl93xx_net_irq,
.mac_port_ctrl = rtl930x_mac_port_ctrl,
.dma_if_intr_rx_runout_sts = RTL930X_DMA_IF_INTR_RX_RUNOUT_STS,
.dma_if_intr_rx_done_sts = RTL930X_DMA_IF_INTR_RX_DONE_STS,
.dma_if_intr_tx_done_sts = RTL930X_DMA_IF_INTR_TX_DONE_STS,
.dma_if_intr_rx_runout_msk = RTL930X_DMA_IF_INTR_RX_RUNOUT_MSK,
.dma_if_intr_rx_done_msk = RTL930X_DMA_IF_INTR_RX_DONE_MSK,
.dma_if_intr_tx_done_msk = RTL930X_DMA_IF_INTR_TX_DONE_MSK,
.l2_ntfy_if_intr_sts = RTL930X_L2_NTFY_IF_INTR_STS,
.l2_ntfy_if_intr_msk = RTL930X_L2_NTFY_IF_INTR_MSK,
.dma_if_ctrl = RTL930X_DMA_IF_CTRL,
.mac_force_mode_ctrl = RTL930X_MAC_FORCE_MODE_CTRL,
.dma_rx_base = RTL930X_DMA_RX_BASE,
.dma_tx_base = RTL930X_DMA_TX_BASE,
.dma_if_rx_ring_size = rtl930x_dma_if_rx_ring_size,
.dma_if_rx_ring_cntr = rtl930x_dma_if_rx_ring_cntr,
.dma_if_rx_cur = RTL930X_DMA_IF_RX_CUR,
.rst_glb_ctrl = RTL930X_RST_GLB_CTRL_0,
.get_mac_link_sts = rtl930x_get_mac_link_sts,
.get_mac_link_dup_sts = rtl930x_get_mac_link_dup_sts,
.get_mac_link_spd_sts = rtl930x_get_mac_link_spd_sts,
.get_mac_rx_pause_sts = rtl930x_get_mac_rx_pause_sts,
.get_mac_tx_pause_sts = rtl930x_get_mac_tx_pause_sts,
.mac = RTL930X_MAC_L2_ADDR_CTRL,
.l2_tbl_flush_ctrl = RTL930X_L2_TBL_FLUSH_CTRL,
.update_cntr = rtl930x_update_cntr,
.create_tx_header = rtl930x_create_tx_header,
.decode_tag = rtl930x_decode_tag,
};
static const struct rtl838x_reg rtl931x_reg = {
.net_irq = rtl93xx_net_irq,
.mac_port_ctrl = rtl931x_mac_port_ctrl,
.dma_if_intr_rx_runout_sts = RTL931X_DMA_IF_INTR_RX_RUNOUT_STS,
.dma_if_intr_rx_done_sts = RTL931X_DMA_IF_INTR_RX_DONE_STS,
.dma_if_intr_tx_done_sts = RTL931X_DMA_IF_INTR_TX_DONE_STS,
.dma_if_intr_rx_runout_msk = RTL931X_DMA_IF_INTR_RX_RUNOUT_MSK,
.dma_if_intr_rx_done_msk = RTL931X_DMA_IF_INTR_RX_DONE_MSK,
.dma_if_intr_tx_done_msk = RTL931X_DMA_IF_INTR_TX_DONE_MSK,
.l2_ntfy_if_intr_sts = RTL931X_L2_NTFY_IF_INTR_STS,
.l2_ntfy_if_intr_msk = RTL931X_L2_NTFY_IF_INTR_MSK,
.dma_if_ctrl = RTL931X_DMA_IF_CTRL,
.mac_force_mode_ctrl = RTL931X_MAC_FORCE_MODE_CTRL,
.dma_rx_base = RTL931X_DMA_RX_BASE,
.dma_tx_base = RTL931X_DMA_TX_BASE,
.dma_if_rx_ring_size = rtl931x_dma_if_rx_ring_size,
.dma_if_rx_ring_cntr = rtl931x_dma_if_rx_ring_cntr,
.dma_if_rx_cur = RTL931X_DMA_IF_RX_CUR,
.rst_glb_ctrl = RTL931X_RST_GLB_CTRL,
.get_mac_link_sts = rtl931x_get_mac_link_sts,
.get_mac_link_dup_sts = rtl931x_get_mac_link_dup_sts,
.get_mac_link_spd_sts = rtl931x_get_mac_link_spd_sts,
.get_mac_rx_pause_sts = rtl931x_get_mac_rx_pause_sts,
.get_mac_tx_pause_sts = rtl931x_get_mac_tx_pause_sts,
.mac = RTL931X_MAC_L2_ADDR_CTRL,
.l2_tbl_flush_ctrl = RTL931X_L2_TBL_FLUSH_CTRL,
.update_cntr = rtl931x_update_cntr,
.create_tx_header = rtl931x_create_tx_header,
.decode_tag = rtl931x_decode_tag,
};
static void rtl838x_hw_reset(struct rtl838x_eth_priv *priv)
{
u32 int_saved, nbuf;
int i, pos;
pr_info("RESETTING %x, CPU_PORT %d\n", priv->family_id, priv->cpu_port);
sw_w32_mask(0x3, 0, priv->r->mac_port_ctrl(priv->cpu_port));
mdelay(100);
/* Disable and clear interrupts */
if (priv->family_id == RTL9300_FAMILY_ID || priv->family_id == RTL9310_FAMILY_ID) {
sw_w32(0x00000000, priv->r->dma_if_intr_rx_runout_msk);
sw_w32(0xffffffff, priv->r->dma_if_intr_rx_runout_sts);
sw_w32(0x00000000, priv->r->dma_if_intr_rx_done_msk);
sw_w32(0xffffffff, priv->r->dma_if_intr_rx_done_sts);
sw_w32(0x00000000, priv->r->dma_if_intr_tx_done_msk);
sw_w32(0x0000000f, priv->r->dma_if_intr_tx_done_sts);
} else {
sw_w32(0x00000000, priv->r->dma_if_intr_msk);
sw_w32(0xffffffff, priv->r->dma_if_intr_sts);
}
if (priv->family_id == RTL8390_FAMILY_ID) {
/* Preserve L2 notification and NBUF settings */
int_saved = sw_r32(priv->r->dma_if_intr_msk);
nbuf = sw_r32(RTL839X_DMA_IF_NBUF_BASE_DESC_ADDR_CTRL);
/* Disable link change interrupt on RTL839x */
sw_w32(0, RTL839X_IMR_PORT_LINK_STS_CHG);
sw_w32(0, RTL839X_IMR_PORT_LINK_STS_CHG + 4);
sw_w32(0x00000000, priv->r->dma_if_intr_msk);
sw_w32(0xffffffff, priv->r->dma_if_intr_sts);
}
/* Reset NIC */
if (priv->family_id == RTL9300_FAMILY_ID || priv->family_id == RTL9310_FAMILY_ID)
sw_w32(0x4, priv->r->rst_glb_ctrl);
else
sw_w32(0x8, priv->r->rst_glb_ctrl);
do { /* Wait for reset of NIC and Queues done */
udelay(20);
} while (sw_r32(priv->r->rst_glb_ctrl) & 0xc);
mdelay(100);
/* Setup Head of Line */
if (priv->family_id == RTL8380_FAMILY_ID)
sw_w32(0, RTL838X_DMA_IF_RX_RING_SIZE); // Disabled on RTL8380
if (priv->family_id == RTL8390_FAMILY_ID)
sw_w32(0xffffffff, RTL839X_DMA_IF_RX_RING_CNTR);
if (priv->family_id == RTL9300_FAMILY_ID) {
for (i = 0; i < priv->rxrings; i++) {
pos = (i % 3) * 10;
sw_w32_mask(0x3ff << pos, 0, priv->r->dma_if_rx_ring_size(i));
sw_w32_mask(0x3ff << pos, priv->rxringlen,
priv->r->dma_if_rx_ring_cntr(i));
}
}
/* Re-enable link change interrupt */
if (priv->family_id == RTL8390_FAMILY_ID) {
sw_w32(0xffffffff, RTL839X_ISR_PORT_LINK_STS_CHG);
sw_w32(0xffffffff, RTL839X_ISR_PORT_LINK_STS_CHG + 4);
sw_w32(0xffffffff, RTL839X_IMR_PORT_LINK_STS_CHG);
sw_w32(0xffffffff, RTL839X_IMR_PORT_LINK_STS_CHG + 4);
/* Restore notification settings: on RTL838x these bits are null */
sw_w32_mask(7 << 20, int_saved & (7 << 20), priv->r->dma_if_intr_msk);
sw_w32(nbuf, RTL839X_DMA_IF_NBUF_BASE_DESC_ADDR_CTRL);
}
}
static void rtl838x_hw_ring_setup(struct rtl838x_eth_priv *priv)
{
int i;
struct ring_b *ring = priv->membase;
for (i = 0; i < priv->rxrings; i++)
sw_w32(KSEG1ADDR(&ring->rx_r[i]), priv->r->dma_rx_base + i * 4);
for (i = 0; i < TXRINGS; i++)
sw_w32(KSEG1ADDR(&ring->tx_r[i]), priv->r->dma_tx_base + i * 4);
}
static void rtl838x_hw_en_rxtx(struct rtl838x_eth_priv *priv)
{
/* Disable Head of Line features for all RX rings */
sw_w32(0xffffffff, priv->r->dma_if_rx_ring_size(0));
/* Truncate RX buffer to 0x640 (1600) bytes, pad TX */
sw_w32(0x06400020, priv->r->dma_if_ctrl);
/* Enable RX done, RX overflow and TX done interrupts */
sw_w32(0xfffff, priv->r->dma_if_intr_msk);
/* Enable DMA, engine expects empty FCS field */
sw_w32_mask(0, RX_EN | TX_EN, priv->r->dma_if_ctrl);
/* Restart TX/RX to CPU port */
sw_w32_mask(0x0, 0x3, priv->r->mac_port_ctrl(priv->cpu_port));
/* Set Speed, duplex, flow control
* FORCE_EN | LINK_EN | NWAY_EN | DUP_SEL
* | SPD_SEL = 0b10 | FORCE_FC_EN | PHY_MASTER_SLV_MANUAL_EN
* | MEDIA_SEL
*/
sw_w32(0x6192F, priv->r->mac_force_mode_ctrl + priv->cpu_port * 4);
/* Enable CRC checks on CPU-port */
sw_w32_mask(0, BIT(3), priv->r->mac_port_ctrl(priv->cpu_port));
}
static void rtl839x_hw_en_rxtx(struct rtl838x_eth_priv *priv)
{
/* Setup CPU-Port: RX Buffer */
sw_w32(0x0000c808, priv->r->dma_if_ctrl);
/* Enable Notify, RX done, RX overflow and TX done interrupts */
sw_w32(0x007fffff, priv->r->dma_if_intr_msk); // Notify IRQ!
/* Enable DMA */
sw_w32_mask(0, RX_EN | TX_EN, priv->r->dma_if_ctrl);
/* Restart TX/RX to CPU port, enable CRC checking */
sw_w32_mask(0x0, 0x3 | BIT(3), priv->r->mac_port_ctrl(priv->cpu_port));
/* CPU port joins Lookup Miss Flooding Portmask */
// TODO: The code below should also work for the RTL838x
sw_w32(0x28000, RTL839X_TBL_ACCESS_L2_CTRL);
sw_w32_mask(0, 0x80000000, RTL839X_TBL_ACCESS_L2_DATA(0));
sw_w32(0x38000, RTL839X_TBL_ACCESS_L2_CTRL);
/* Force CPU port link up */
sw_w32_mask(0, 3, priv->r->mac_force_mode_ctrl + priv->cpu_port * 4);
}
static void rtl93xx_hw_en_rxtx(struct rtl838x_eth_priv *priv)
{
int i, pos;
u32 v;
/* Setup CPU-Port: RX Buffer truncated at 1600 Bytes */
sw_w32(0x06400040, priv->r->dma_if_ctrl);
for (i = 0; i < priv->rxrings; i++) {
pos = (i % 3) * 10;
sw_w32_mask(0x3ff << pos, priv->rxringlen << pos, priv->r->dma_if_rx_ring_size(i));
// Some SoCs have issues with missing underflow protection
v = (sw_r32(priv->r->dma_if_rx_ring_cntr(i)) >> pos) & 0x3ff;
sw_w32_mask(0x3ff << pos, v, priv->r->dma_if_rx_ring_cntr(i));
}
/* Enable Notify, RX done, RX overflow and TX done interrupts */
sw_w32(0xffffffff, priv->r->dma_if_intr_rx_runout_msk);
sw_w32(0xffffffff, priv->r->dma_if_intr_rx_done_msk);
sw_w32(0x0000000f, priv->r->dma_if_intr_tx_done_msk);
/* Enable DMA */
sw_w32_mask(0, RX_EN_93XX | TX_EN_93XX, priv->r->dma_if_ctrl);
/* Restart TX/RX to CPU port, enable CRC checking */
sw_w32_mask(0x0, 0x3 | BIT(4), priv->r->mac_port_ctrl(priv->cpu_port));
sw_w32_mask(0, BIT(priv->cpu_port), RTL930X_L2_UNKN_UC_FLD_PMSK);
sw_w32(0x217, priv->r->mac_force_mode_ctrl + priv->cpu_port * 4);
}
static void rtl838x_setup_ring_buffer(struct rtl838x_eth_priv *priv, struct ring_b *ring)
{
int i, j;
struct p_hdr *h;
for (i = 0; i < priv->rxrings; i++) {
for (j = 0; j < priv->rxringlen; j++) {
h = &ring->rx_header[i][j];
memset(h, 0, sizeof(struct p_hdr));
h->buf = (u8 *)KSEG1ADDR(ring->rx_space
+ i * priv->rxringlen * RING_BUFFER
+ j * RING_BUFFER);
h->size = RING_BUFFER;
/* All rings owned by switch, last one wraps */
ring->rx_r[i][j] = KSEG1ADDR(h) | 1
| (j == (priv->rxringlen - 1) ? WRAP : 0);
}
ring->c_rx[i] = 0;
}
for (i = 0; i < TXRINGS; i++) {
for (j = 0; j < TXRINGLEN; j++) {
h = &ring->tx_header[i][j];
memset(h, 0, sizeof(struct p_hdr));
h->buf = (u8 *)KSEG1ADDR(ring->tx_space
+ i * TXRINGLEN * RING_BUFFER
+ j * RING_BUFFER);
h->size = RING_BUFFER;
ring->tx_r[i][j] = KSEG1ADDR(&ring->tx_header[i][j]);
}
/* Last header is wrapping around */
ring->tx_r[i][j-1] |= WRAP;
ring->c_tx[i] = 0;
}
}
static void rtl839x_setup_notify_ring_buffer(struct rtl838x_eth_priv *priv)
{
int i;
struct notify_b *b = priv->membase + sizeof(struct ring_b);
for (i = 0; i < NOTIFY_BLOCKS; i++)
b->ring[i] = KSEG1ADDR(&b->blocks[i]) | 1 | (i == (NOTIFY_BLOCKS - 1) ? WRAP : 0);
sw_w32((u32) b->ring, RTL839X_DMA_IF_NBUF_BASE_DESC_ADDR_CTRL);
sw_w32_mask(0x3ff << 2, 100 << 2, RTL839X_L2_NOTIFICATION_CTRL);
/* Setup notification events */
sw_w32_mask(0, 1 << 14, RTL839X_L2_CTRL_0); // RTL8390_L2_CTRL_0_FLUSH_NOTIFY_EN
sw_w32_mask(0, 1 << 12, RTL839X_L2_NOTIFICATION_CTRL); // SUSPEND_NOTIFICATION_EN
/* Enable Notification */
sw_w32_mask(0, 1 << 0, RTL839X_L2_NOTIFICATION_CTRL);
priv->lastEvent = 0;
}
static int rtl838x_eth_open(struct net_device *ndev)
{
unsigned long flags;
struct rtl838x_eth_priv *priv = netdev_priv(ndev);
struct ring_b *ring = priv->membase;
int i, err;
pr_debug("%s called: RX rings %d(length %d), TX rings %d(length %d)\n",
__func__, priv->rxrings, priv->rxringlen, TXRINGS, TXRINGLEN);
spin_lock_irqsave(&priv->lock, flags);
rtl838x_hw_reset(priv);
rtl838x_setup_ring_buffer(priv, ring);
if (priv->family_id == RTL8390_FAMILY_ID) {
rtl839x_setup_notify_ring_buffer(priv);
/* Make sure the ring structure is visible to the ASIC */
mb();
flush_cache_all();
}
rtl838x_hw_ring_setup(priv);
err = request_irq(ndev->irq, priv->r->net_irq, IRQF_SHARED, ndev->name, ndev);
if (err) {
netdev_err(ndev, "%s: could not acquire interrupt: %d\n",
__func__, err);
return err;
}
phylink_start(priv->phylink);
for (i = 0; i < priv->rxrings; i++)
napi_enable(&priv->rx_qs[i].napi);
switch (priv->family_id) {
case RTL8380_FAMILY_ID:
rtl838x_hw_en_rxtx(priv);
/* Trap IGMP/MLD traffic to CPU-Port */
sw_w32(0x3, RTL838X_SPCL_TRAP_IGMP_CTRL);
/* Flush learned FDB entries on link down of a port */
sw_w32_mask(0, BIT(7), RTL838X_L2_CTRL_0);
break;
case RTL8390_FAMILY_ID:
rtl839x_hw_en_rxtx(priv);
// Trap MLD and IGMP messages to CPU_PORT
sw_w32(0x3, RTL839X_SPCL_TRAP_IGMP_CTRL);
/* Flush learned FDB entries on link down of a port */
sw_w32_mask(0, BIT(7), RTL839X_L2_CTRL_0);
break;
case RTL9300_FAMILY_ID:
rtl93xx_hw_en_rxtx(priv);
/* Flush learned FDB entries on link down of a port */
sw_w32_mask(0, BIT(7), RTL930X_L2_CTRL);
// Trap MLD and IGMP messages to CPU_PORT
sw_w32((0x2 << 3) | 0x2, RTL930X_VLAN_APP_PKT_CTRL);
break;
case RTL9310_FAMILY_ID:
rtl93xx_hw_en_rxtx(priv);
break;
}
netif_tx_start_all_queues(ndev);
spin_unlock_irqrestore(&priv->lock, flags);
return 0;
}
static void rtl838x_hw_stop(struct rtl838x_eth_priv *priv)
{
u32 force_mac = priv->family_id == RTL8380_FAMILY_ID ? 0x6192C : 0x75;
u32 clear_irq = priv->family_id == RTL8380_FAMILY_ID ? 0x000fffff : 0x007fffff;
int i;
// Disable RX/TX from/to CPU-port
sw_w32_mask(0x3, 0, priv->r->mac_port_ctrl(priv->cpu_port));
/* Disable traffic */
if (priv->family_id == RTL9300_FAMILY_ID || priv->family_id == RTL9310_FAMILY_ID)
sw_w32_mask(RX_EN_93XX | TX_EN_93XX, 0, priv->r->dma_if_ctrl);
else
sw_w32_mask(RX_EN | TX_EN, 0, priv->r->dma_if_ctrl);
mdelay(200); // Test, whether this is needed
/* Block all ports */
if (priv->family_id == RTL8380_FAMILY_ID) {
sw_w32(0x03000000, RTL838X_TBL_ACCESS_DATA_0(0));
sw_w32(0x00000000, RTL838X_TBL_ACCESS_DATA_0(1));
sw_w32(1 << 15 | 2 << 12, RTL838X_TBL_ACCESS_CTRL_0);
}
/* Flush L2 address cache */
if (priv->family_id == RTL8380_FAMILY_ID) {
for (i = 0; i <= priv->cpu_port; i++) {
sw_w32(1 << 26 | 1 << 23 | i << 5, priv->r->l2_tbl_flush_ctrl);
do { } while (sw_r32(priv->r->l2_tbl_flush_ctrl) & (1 << 26));
}
} else if (priv->family_id == RTL8390_FAMILY_ID) {
for (i = 0; i <= priv->cpu_port; i++) {
sw_w32(1 << 28 | 1 << 25 | i << 5, priv->r->l2_tbl_flush_ctrl);
do { } while (sw_r32(priv->r->l2_tbl_flush_ctrl) & (1 << 28));
}
}
// TODO: L2 flush register is 64 bit on RTL931X and 930X
/* CPU-Port: Link down */
if (priv->family_id == RTL8380_FAMILY_ID || priv->family_id == RTL8390_FAMILY_ID)
sw_w32(force_mac, priv->r->mac_force_mode_ctrl + priv->cpu_port * 4);
else
sw_w32_mask(0x3, 0, priv->r->mac_force_mode_ctrl + priv->cpu_port *4);
mdelay(100);
/* Disable all TX/RX interrupts */
if (priv->family_id == RTL9300_FAMILY_ID || priv->family_id == RTL9310_FAMILY_ID) {
sw_w32(0x00000000, priv->r->dma_if_intr_rx_runout_msk);
sw_w32(0xffffffff, priv->r->dma_if_intr_rx_runout_sts);
sw_w32(0x00000000, priv->r->dma_if_intr_rx_done_msk);
sw_w32(0xffffffff, priv->r->dma_if_intr_rx_done_sts);
sw_w32(0x00000000, priv->r->dma_if_intr_tx_done_msk);
sw_w32(0x0000000f, priv->r->dma_if_intr_tx_done_sts);
} else {
sw_w32(0x00000000, priv->r->dma_if_intr_msk);
sw_w32(clear_irq, priv->r->dma_if_intr_sts);
}
/* Disable TX/RX DMA */
sw_w32(0x00000000, priv->r->dma_if_ctrl);
mdelay(200);
}
static int rtl838x_eth_stop(struct net_device *ndev)
{
unsigned long flags;
int i;
struct rtl838x_eth_priv *priv = netdev_priv(ndev);
pr_info("in %s\n", __func__);
spin_lock_irqsave(&priv->lock, flags);
phylink_stop(priv->phylink);
rtl838x_hw_stop(priv);
free_irq(ndev->irq, ndev);
for (i = 0; i < priv->rxrings; i++)
napi_disable(&priv->rx_qs[i].napi);
netif_tx_stop_all_queues(ndev);
spin_unlock_irqrestore(&priv->lock, flags);
return 0;
}
static void rtl839x_eth_set_multicast_list(struct net_device *ndev)
{
if (!(ndev->flags & (IFF_PROMISC | IFF_ALLMULTI))) {
sw_w32(0x0, RTL839X_RMA_CTRL_0);
sw_w32(0x0, RTL839X_RMA_CTRL_1);
sw_w32(0x0, RTL839X_RMA_CTRL_2);
sw_w32(0x0, RTL839X_RMA_CTRL_3);
}
if (ndev->flags & IFF_ALLMULTI) {
sw_w32(0x7fffffff, RTL839X_RMA_CTRL_0);
sw_w32(0x7fffffff, RTL839X_RMA_CTRL_1);
sw_w32(0x7fffffff, RTL839X_RMA_CTRL_2);
}
if (ndev->flags & IFF_PROMISC) {
sw_w32(0x7fffffff, RTL839X_RMA_CTRL_0);
sw_w32(0x7fffffff, RTL839X_RMA_CTRL_1);
sw_w32(0x7fffffff, RTL839X_RMA_CTRL_2);
sw_w32(0x3ff, RTL839X_RMA_CTRL_3);
}
}
static void rtl838x_eth_set_multicast_list(struct net_device *ndev)
{
struct rtl838x_eth_priv *priv = netdev_priv(ndev);
if (priv->family_id == RTL8390_FAMILY_ID)
return rtl839x_eth_set_multicast_list(ndev);
if (!(ndev->flags & (IFF_PROMISC | IFF_ALLMULTI))) {
sw_w32(0x0, RTL838X_RMA_CTRL_0);
sw_w32(0x0, RTL838X_RMA_CTRL_1);
}
if (ndev->flags & IFF_ALLMULTI)
sw_w32(0x1fffff, RTL838X_RMA_CTRL_0);
if (ndev->flags & IFF_PROMISC) {
sw_w32(0x1fffff, RTL838X_RMA_CTRL_0);
sw_w32(0x7fff, RTL838X_RMA_CTRL_1);
}
}
static void rtl930x_eth_set_multicast_list(struct net_device *ndev)
{
if (!(ndev->flags & (IFF_PROMISC | IFF_ALLMULTI))) {
sw_w32(0x0, RTL930X_RMA_CTRL_0);
sw_w32(0x0, RTL930X_RMA_CTRL_1);
sw_w32(0x0, RTL930X_RMA_CTRL_2);
}
if (ndev->flags & IFF_ALLMULTI) {
sw_w32(0x7fffffff, RTL930X_RMA_CTRL_0);
sw_w32(0x7fffffff, RTL930X_RMA_CTRL_1);
sw_w32(0x7fffffff, RTL930X_RMA_CTRL_2);
}
if (ndev->flags & IFF_PROMISC) {
sw_w32(0x7fffffff, RTL930X_RMA_CTRL_0);
sw_w32(0x7fffffff, RTL930X_RMA_CTRL_1);
sw_w32(0x7fffffff, RTL930X_RMA_CTRL_2);
}
}
static void rtl931x_eth_set_multicast_list(struct net_device *ndev)
{
if (!(ndev->flags & (IFF_PROMISC | IFF_ALLMULTI))) {
sw_w32(0x0, RTL931X_RMA_CTRL_0);
sw_w32(0x0, RTL931X_RMA_CTRL_1);
sw_w32(0x0, RTL931X_RMA_CTRL_2);
}
if (ndev->flags & IFF_ALLMULTI) {
sw_w32(0x7fffffff, RTL931X_RMA_CTRL_0);
sw_w32(0x7fffffff, RTL931X_RMA_CTRL_1);
sw_w32(0x7fffffff, RTL931X_RMA_CTRL_2);
}
if (ndev->flags & IFF_PROMISC) {
sw_w32(0x7fffffff, RTL931X_RMA_CTRL_0);
sw_w32(0x7fffffff, RTL931X_RMA_CTRL_1);
sw_w32(0x7fffffff, RTL931X_RMA_CTRL_2);
}
}
static void rtl838x_eth_tx_timeout(struct net_device *ndev)
{
unsigned long flags;
struct rtl838x_eth_priv *priv = netdev_priv(ndev);
pr_warn("%s\n", __func__);
spin_lock_irqsave(&priv->lock, flags);
rtl838x_hw_stop(priv);
rtl838x_hw_ring_setup(priv);
rtl838x_hw_en_rxtx(priv);
netif_trans_update(ndev);
netif_start_queue(ndev);
spin_unlock_irqrestore(&priv->lock, flags);
}
static int rtl838x_eth_tx(struct sk_buff *skb, struct net_device *dev)
{
int len, i;
struct rtl838x_eth_priv *priv = netdev_priv(dev);
struct ring_b *ring = priv->membase;
uint32_t val;
int ret;
unsigned long flags;
struct p_hdr *h;
int dest_port = -1;
int q = skb_get_queue_mapping(skb) % TXRINGS;
if (q) // Check for high prio queue
pr_debug("SKB priority: %d\n", skb->priority);
spin_lock_irqsave(&priv->lock, flags);
len = skb->len;
/* Check for DSA tagging at the end of the buffer */
if (netdev_uses_dsa(dev) && skb->data[len-4] == 0x80 && skb->data[len-3] > 0
&& skb->data[len-3] < priv->cpu_port && skb->data[len-2] == 0x10
&& skb->data[len-1] == 0x00) {
/* Reuse tag space for CRC if possible */
dest_port = skb->data[len-3];
skb->data[len-4] = skb->data[len-3] = skb->data[len-2] = skb->data[len-1] = 0x00;
len -= 4;
}
len += 4; // Add space for CRC
if (skb_padto(skb, len)) {
ret = NETDEV_TX_OK;
goto txdone;
}
/* We can send this packet if CPU owns the descriptor */
if (!(ring->tx_r[q][ring->c_tx[q]] & 0x1)) {
/* Set descriptor for tx */
h = &ring->tx_header[q][ring->c_tx[q]];
h->size = len;
h->len = len;
// On RTL8380 SoCs, small packet lengths being sent need adjustments
if (priv->family_id == RTL8380_FAMILY_ID) {
if (len < ETH_ZLEN - 4)
h->len -= 4;
}
priv->r->create_tx_header(h, dest_port, skb->priority >> 1);
/* Copy packet data to tx buffer */
memcpy((void *)KSEG1ADDR(h->buf), skb->data, len);
/* Make sure packet data is visible to ASIC */
wmb();
/* Hand over to switch */
ring->tx_r[q][ring->c_tx[q]] |= 1;
// Before starting TX, prevent a Lextra bus bug on RTL8380 SoCs
if (priv->family_id == RTL8380_FAMILY_ID) {
for (i = 0; i < 10; i++) {
val = sw_r32(priv->r->dma_if_ctrl);
if ((val & 0xc) == 0xc)
break;
}
}
/* Tell switch to send data */
if (priv->family_id == RTL9310_FAMILY_ID
|| priv->family_id == RTL9300_FAMILY_ID) {
// Ring ID q == 0: Low priority, Ring ID = 1: High prio queue
if (!q)
sw_w32_mask(0, BIT(2), priv->r->dma_if_ctrl);
else
sw_w32_mask(0, BIT(3), priv->r->dma_if_ctrl);
} else {
sw_w32_mask(0, TX_DO, priv->r->dma_if_ctrl);
}
dev->stats.tx_packets++;
dev->stats.tx_bytes += len;
dev_kfree_skb(skb);
ring->c_tx[q] = (ring->c_tx[q] + 1) % TXRINGLEN;
ret = NETDEV_TX_OK;
} else {
dev_warn(&priv->pdev->dev, "Data is owned by switch\n");
ret = NETDEV_TX_BUSY;
}
txdone:
spin_unlock_irqrestore(&priv->lock, flags);
return ret;
}
/*
* Return queue number for TX. On the RTL83XX, these queues have equal priority
* so we do round-robin
*/
u16 rtl83xx_pick_tx_queue(struct net_device *dev, struct sk_buff *skb,
struct net_device *sb_dev)
{
static u8 last = 0;
last++;
return last % TXRINGS;
}
/*
* Return queue number for TX. On the RTL93XX, queue 1 is the high priority queue
*/
u16 rtl93xx_pick_tx_queue(struct net_device *dev, struct sk_buff *skb,
struct net_device *sb_dev)
{
if (skb->priority >= TC_PRIO_CONTROL)
return 1;
return 0;
}
static int rtl838x_hw_receive(struct net_device *dev, int r, int budget)
{
struct rtl838x_eth_priv *priv = netdev_priv(dev);
struct ring_b *ring = priv->membase;
struct sk_buff *skb;
unsigned long flags;
int i, len, work_done = 0;
u8 *data, *skb_data;
unsigned int val;
u32 *last;
struct p_hdr *h;
bool dsa = netdev_uses_dsa(dev);
struct dsa_tag tag;
spin_lock_irqsave(&priv->lock, flags);
last = (u32 *)KSEG1ADDR(sw_r32(priv->r->dma_if_rx_cur + r * 4));
pr_debug("---------------------------------------------------------- RX - %d\n", r);
do {
if ((ring->rx_r[r][ring->c_rx[r]] & 0x1)) {
if (&ring->rx_r[r][ring->c_rx[r]] != last) {
netdev_warn(dev, "Ring contention: r: %x, last %x, cur %x\n",
r, (uint32_t)last, (u32) &ring->rx_r[r][ring->c_rx[r]]);
}
break;
}
h = &ring->rx_header[r][ring->c_rx[r]];
data = (u8 *)KSEG1ADDR(h->buf);
len = h->len;
if (!len)
break;
work_done++;
len -= 4; /* strip the CRC */
/* Add 4 bytes for cpu_tag */
if (dsa)
len += 4;
skb = alloc_skb(len + 4, GFP_KERNEL);
skb_reserve(skb, NET_IP_ALIGN);
if (likely(skb)) {
/* BUG: Prevent bug on RTL838x SoCs*/
if (priv->family_id == RTL8380_FAMILY_ID) {
sw_w32(0xffffffff, priv->r->dma_if_rx_ring_size(0));
for (i = 0; i < priv->rxrings; i++) {
/* Update each ring cnt */
val = sw_r32(priv->r->dma_if_rx_ring_cntr(i));
sw_w32(val, priv->r->dma_if_rx_ring_cntr(i));
}
}
skb_data = skb_put(skb, len);
/* Make sure data is visible */
mb();
memcpy(skb->data, (u8 *)KSEG1ADDR(data), len);
/* Overwrite CRC with cpu_tag */
if (dsa) {
priv->r->decode_tag(h, &tag);
skb->data[len-4] = 0x80;
skb->data[len-3] = tag.port;
skb->data[len-2] = 0x10;
skb->data[len-1] = 0x00;
if (tag.l2_offloaded)
skb->data[len-3] |= 0x40;
}
if (tag.queue >= 0)
pr_debug("Queue: %d, len: %d, reason %d port %d\n",
tag.queue, len, tag.reason, tag.port);
skb->protocol = eth_type_trans(skb, dev);
if (dev->features & NETIF_F_RXCSUM) {
if (tag.crc_error)
skb_checksum_none_assert(skb);
else
skb->ip_summed = CHECKSUM_UNNECESSARY;
}
dev->stats.rx_packets++;
dev->stats.rx_bytes += len;
netif_receive_skb(skb);
} else {
if (net_ratelimit())
dev_warn(&dev->dev, "low on memory - packet dropped\n");
dev->stats.rx_dropped++;
}
/* Reset header structure */
memset(h, 0, sizeof(struct p_hdr));
h->buf = data;
h->size = RING_BUFFER;
ring->rx_r[r][ring->c_rx[r]] = KSEG1ADDR(h) | 0x1
| (ring->c_rx[r] == (priv->rxringlen - 1) ? WRAP : 0x1);
ring->c_rx[r] = (ring->c_rx[r] + 1) % priv->rxringlen;
last = (u32 *)KSEG1ADDR(sw_r32(priv->r->dma_if_rx_cur + r * 4));
} while (&ring->rx_r[r][ring->c_rx[r]] != last && work_done < budget);
// Update counters
priv->r->update_cntr(r, 0);
spin_unlock_irqrestore(&priv->lock, flags);
return work_done;
}
static int rtl838x_poll_rx(struct napi_struct *napi, int budget)
{
struct rtl838x_rx_q *rx_q = container_of(napi, struct rtl838x_rx_q, napi);
struct rtl838x_eth_priv *priv = rx_q->priv;
int work_done = 0;
int r = rx_q->id;
int work;
while (work_done < budget) {
work = rtl838x_hw_receive(priv->netdev, r, budget - work_done);
if (!work)
break;
work_done += work;
}
if (work_done < budget) {
napi_complete_done(napi, work_done);
/* Enable RX interrupt */
if (priv->family_id == RTL9300_FAMILY_ID || priv->family_id == RTL9310_FAMILY_ID)
sw_w32(0xffffffff, priv->r->dma_if_intr_rx_done_msk);
else
sw_w32_mask(0, 0xf00ff | BIT(r + 8), priv->r->dma_if_intr_msk);
}
return work_done;
}
static void rtl838x_validate(struct phylink_config *config,
unsigned long *supported,
struct phylink_link_state *state)
{
__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
pr_debug("In %s\n", __func__);
if (!phy_interface_mode_is_rgmii(state->interface) &&
state->interface != PHY_INTERFACE_MODE_1000BASEX &&
state->interface != PHY_INTERFACE_MODE_MII &&
state->interface != PHY_INTERFACE_MODE_REVMII &&
state->interface != PHY_INTERFACE_MODE_GMII &&
state->interface != PHY_INTERFACE_MODE_QSGMII &&
state->interface != PHY_INTERFACE_MODE_INTERNAL &&
state->interface != PHY_INTERFACE_MODE_SGMII) {
bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
pr_err("Unsupported interface: %d\n", state->interface);
return;
}
/* Allow all the expected bits */
phylink_set(mask, Autoneg);
phylink_set_port_modes(mask);
phylink_set(mask, Pause);
phylink_set(mask, Asym_Pause);
/* With the exclusion of MII and Reverse MII, we support Gigabit,
* including Half duplex
*/
if (state->interface != PHY_INTERFACE_MODE_MII &&
state->interface != PHY_INTERFACE_MODE_REVMII) {
phylink_set(mask, 1000baseT_Full);
phylink_set(mask, 1000baseT_Half);
}
phylink_set(mask, 10baseT_Half);
phylink_set(mask, 10baseT_Full);
phylink_set(mask, 100baseT_Half);
phylink_set(mask, 100baseT_Full);
bitmap_and(supported, supported, mask,
__ETHTOOL_LINK_MODE_MASK_NBITS);
bitmap_and(state->advertising, state->advertising, mask,
__ETHTOOL_LINK_MODE_MASK_NBITS);
}
static void rtl838x_mac_config(struct phylink_config *config,
unsigned int mode,
const struct phylink_link_state *state)
{
/* This is only being called for the master device,
* i.e. the CPU-Port. We don't need to do anything.
*/
pr_info("In %s, mode %x\n", __func__, mode);
}
static void rtl838x_mac_an_restart(struct phylink_config *config)
{
struct net_device *dev = container_of(config->dev, struct net_device, dev);
struct rtl838x_eth_priv *priv = netdev_priv(dev);
/* This works only on RTL838x chips */
if (priv->family_id != RTL8380_FAMILY_ID)
return;
pr_debug("In %s\n", __func__);
/* Restart by disabling and re-enabling link */
sw_w32(0x6192D, priv->r->mac_force_mode_ctrl + priv->cpu_port * 4);
mdelay(20);
sw_w32(0x6192F, priv->r->mac_force_mode_ctrl + priv->cpu_port * 4);
}
static int rtl838x_mac_pcs_get_state(struct phylink_config *config,
struct phylink_link_state *state)
{
u32 speed;
struct net_device *dev = container_of(config->dev, struct net_device, dev);
struct rtl838x_eth_priv *priv = netdev_priv(dev);
int port = priv->cpu_port;
pr_debug("In %s\n", __func__);
state->link = priv->r->get_mac_link_sts(port) ? 1 : 0;
state->duplex = priv->r->get_mac_link_dup_sts(port) ? 1 : 0;
speed = priv->r->get_mac_link_spd_sts(port);
switch (speed) {
case 0:
state->speed = SPEED_10;
break;
case 1:
state->speed = SPEED_100;
break;
case 2:
state->speed = SPEED_1000;
break;
default:
state->speed = SPEED_UNKNOWN;
break;
}
state->pause &= (MLO_PAUSE_RX | MLO_PAUSE_TX);
if (priv->r->get_mac_rx_pause_sts(port))
state->pause |= MLO_PAUSE_RX;
if (priv->r->get_mac_tx_pause_sts(port))
state->pause |= MLO_PAUSE_TX;
return 1;
}
static void rtl838x_mac_link_down(struct phylink_config *config,
unsigned int mode,
phy_interface_t interface)
{
struct net_device *dev = container_of(config->dev, struct net_device, dev);
struct rtl838x_eth_priv *priv = netdev_priv(dev);
pr_debug("In %s\n", __func__);
/* Stop TX/RX to port */
sw_w32_mask(0x03, 0, priv->r->mac_port_ctrl(priv->cpu_port));
}
static void rtl838x_mac_link_up(struct phylink_config *config, unsigned int mode,
phy_interface_t interface,
struct phy_device *phy)
{
struct net_device *dev = container_of(config->dev, struct net_device, dev);
struct rtl838x_eth_priv *priv = netdev_priv(dev);
pr_debug("In %s\n", __func__);
/* Restart TX/RX to port */
sw_w32_mask(0, 0x03, priv->r->mac_port_ctrl(priv->cpu_port));
}
static void rtl838x_set_mac_hw(struct net_device *dev, u8 *mac)
{
struct rtl838x_eth_priv *priv = netdev_priv(dev);
unsigned long flags;
spin_lock_irqsave(&priv->lock, flags);
pr_debug("In %s\n", __func__);
sw_w32((mac[0] << 8) | mac[1], priv->r->mac);
sw_w32((mac[2] << 24) | (mac[3] << 16) | (mac[4] << 8) | mac[5], priv->r->mac + 4);
if (priv->family_id == RTL8380_FAMILY_ID) {
/* 2 more registers, ALE/MAC block */
sw_w32((mac[0] << 8) | mac[1], RTL838X_MAC_ALE);
sw_w32((mac[2] << 24) | (mac[3] << 16) | (mac[4] << 8) | mac[5],
(RTL838X_MAC_ALE + 4));
sw_w32((mac[0] << 8) | mac[1], RTL838X_MAC2);
sw_w32((mac[2] << 24) | (mac[3] << 16) | (mac[4] << 8) | mac[5],
RTL838X_MAC2 + 4);
}
spin_unlock_irqrestore(&priv->lock, flags);
}
static int rtl838x_set_mac_address(struct net_device *dev, void *p)
{
struct rtl838x_eth_priv *priv = netdev_priv(dev);
const struct sockaddr *addr = p;
u8 *mac = (u8 *) (addr->sa_data);
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
rtl838x_set_mac_hw(dev, mac);
pr_info("Using MAC %08x%08x\n", sw_r32(priv->r->mac), sw_r32(priv->r->mac + 4));
return 0;
}
static int rtl8390_init_mac(struct rtl838x_eth_priv *priv)
{
// We will need to set-up EEE and the egress-rate limitation
return 0;
}
static int rtl8380_init_mac(struct rtl838x_eth_priv *priv)
{
int i;
if (priv->family_id == 0x8390)
return rtl8390_init_mac(priv);
pr_info("%s\n", __func__);
/* fix timer for EEE */
sw_w32(0x5001411, RTL838X_EEE_TX_TIMER_GIGA_CTRL);
sw_w32(0x5001417, RTL838X_EEE_TX_TIMER_GELITE_CTRL);
/* Init VLAN */
if (priv->id == 0x8382) {
for (i = 0; i <= 28; i++)
sw_w32(0, 0xd57c + i * 0x80);
}
if (priv->id == 0x8380) {
for (i = 8; i <= 28; i++)
sw_w32(0, 0xd57c + i * 0x80);
}
return 0;
}
static int rtl838x_get_link_ksettings(struct net_device *ndev,
struct ethtool_link_ksettings *cmd)
{
struct rtl838x_eth_priv *priv = netdev_priv(ndev);
pr_debug("%s called\n", __func__);
return phylink_ethtool_ksettings_get(priv->phylink, cmd);
}
static int rtl838x_set_link_ksettings(struct net_device *ndev,
const struct ethtool_link_ksettings *cmd)
{
struct rtl838x_eth_priv *priv = netdev_priv(ndev);
pr_debug("%s called\n", __func__);
return phylink_ethtool_ksettings_set(priv->phylink, cmd);
}
static int rtl838x_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
{
u32 val;
int err;
struct rtl838x_eth_priv *priv = bus->priv;
if (mii_id >= 24 && mii_id <= 27 && priv->id == 0x8380)
return rtl838x_read_sds_phy(mii_id, regnum);
err = rtl838x_read_phy(mii_id, 0, regnum, &val);
if (err)
return err;
return val;
}
static int rtl839x_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
{
u32 val;
int err;
struct rtl838x_eth_priv *priv = bus->priv;
if (mii_id >= 48 && mii_id <= 49 && priv->id == 0x8393)
return rtl839x_read_sds_phy(mii_id, regnum);
err = rtl839x_read_phy(mii_id, 0, regnum, &val);
if (err)
return err;
return val;
}
static int rtl930x_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
{
u32 val;
int err;
// TODO: These are hard-coded for the 2 Fibre Ports of the XGS1210
if (mii_id >= 26 && mii_id <= 27)
return rtl930x_read_sds_phy(mii_id - 18, 0, regnum);
if (regnum & MII_ADDR_C45) {
regnum &= ~MII_ADDR_C45;
err = rtl930x_read_mmd_phy(mii_id, regnum >> 16, regnum & 0xffff, &val);
} else {
err = rtl930x_read_phy(mii_id, 0, regnum, &val);
}
if (err)
return err;
return val;
}
static int rtl931x_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
{
u32 val;
int err;
// struct rtl838x_eth_priv *priv = bus->priv;
// if (mii_id >= 48 && mii_id <= 49 && priv->id == 0x8393)
// return rtl839x_read_sds_phy(mii_id, regnum);
err = rtl931x_read_phy(mii_id, 0, regnum, &val);
if (err)
return err;
return val;
}
static int rtl838x_mdio_write(struct mii_bus *bus, int mii_id,
int regnum, u16 value)
{
u32 offset = 0;
struct rtl838x_eth_priv *priv = bus->priv;
if (mii_id >= 24 && mii_id <= 27 && priv->id == 0x8380) {
if (mii_id == 26)
offset = 0x100;
sw_w32(value, RTL838X_SDS4_FIB_REG0 + offset + (regnum << 2));
return 0;
}
return rtl838x_write_phy(mii_id, 0, regnum, value);
}
static int rtl839x_mdio_write(struct mii_bus *bus, int mii_id,
int regnum, u16 value)
{
struct rtl838x_eth_priv *priv = bus->priv;
if (mii_id >= 48 && mii_id <= 49 && priv->id == 0x8393)
return rtl839x_write_sds_phy(mii_id, regnum, value);
return rtl839x_write_phy(mii_id, 0, regnum, value);
}
static int rtl930x_mdio_write(struct mii_bus *bus, int mii_id,
int regnum, u16 value)
{
// struct rtl838x_eth_priv *priv = bus->priv;
// if (mii_id >= 48 && mii_id <= 49 && priv->id == 0x8393)
// return rtl839x_write_sds_phy(mii_id, regnum, value);
if (regnum & MII_ADDR_C45) {
regnum &= ~MII_ADDR_C45;
return rtl930x_write_mmd_phy(mii_id, regnum >> 16, regnum & 0xffff, value);
}
return rtl930x_write_phy(mii_id, 0, regnum, value);
}
static int rtl931x_mdio_write(struct mii_bus *bus, int mii_id,
int regnum, u16 value)
{
// struct rtl838x_eth_priv *priv = bus->priv;
// if (mii_id >= 48 && mii_id <= 49 && priv->id == 0x8393)
// return rtl839x_write_sds_phy(mii_id, regnum, value);
return rtl931x_write_phy(mii_id, 0, regnum, value);
}
static int rtl838x_mdio_reset(struct mii_bus *bus)
{
pr_debug("%s called\n", __func__);
/* Disable MAC polling the PHY so that we can start configuration */
sw_w32(0x00000000, RTL838X_SMI_POLL_CTRL);
/* Enable PHY control via SoC */
sw_w32_mask(0, 1 << 15, RTL838X_SMI_GLB_CTRL);
// Probably should reset all PHYs here...
return 0;
}
static int rtl839x_mdio_reset(struct mii_bus *bus)
{
return 0;
pr_debug("%s called\n", __func__);
/* BUG: The following does not work, but should! */
/* Disable MAC polling the PHY so that we can start configuration */
sw_w32(0x00000000, RTL839X_SMI_PORT_POLLING_CTRL);
sw_w32(0x00000000, RTL839X_SMI_PORT_POLLING_CTRL + 4);
/* Disable PHY polling via SoC */
sw_w32_mask(1 << 7, 0, RTL839X_SMI_GLB_CTRL);
// Probably should reset all PHYs here...
return 0;
}
static int rtl931x_mdio_reset(struct mii_bus *bus)
{
sw_w32(0x00000000, RTL931X_SMI_PORT_POLLING_CTRL);
sw_w32(0x00000000, RTL931X_SMI_PORT_POLLING_CTRL + 4);
pr_debug("%s called\n", __func__);
return 0;
}
static int rtl930x_mdio_reset(struct mii_bus *bus)
{
int i;
int pos;
pr_info("RTL930X_SMI_PORT0_15_POLLING_SEL %08x 16-27: %08x\n",
sw_r32(RTL930X_SMI_PORT0_15_POLLING_SEL),
sw_r32(RTL930X_SMI_PORT16_27_POLLING_SEL));
pr_info("%s: Enable SMI polling on SMI bus 0, SMI1, SMI2, disable on SMI3\n", __func__);
sw_w32_mask(BIT(20) | BIT(21) | BIT(22), BIT(23), RTL930X_SMI_GLB_CTRL);
pr_info("RTL9300 Powering on SerDes ports\n");
rtl9300_sds_power(24, 1);
rtl9300_sds_power(25, 1);
rtl9300_sds_power(26, 1);
rtl9300_sds_power(27, 1);
mdelay(200);
// RTL930X_SMI_PORT0_15_POLLING_SEL 55550000 16-27: 00f9aaaa
// i.e SMI=0 for all ports
for (i = 0; i < 5; i++)
pr_info("port phy: %08x\n", sw_r32(RTL930X_SMI_PORT0_5_ADDR + i *4));
// 1-to-1 mapping of port to phy-address
for (i = 0; i < 24; i++) {
pos = (i % 6) * 5;
sw_w32_mask(0x1f << pos, i << pos, RTL930X_SMI_PORT0_5_ADDR + (i / 6) * 4);
}
// ports 24 and 25 have PHY addresses 8 and 9, ports 26/27 PHY 26/27
sw_w32(8 | 9 << 5 | 26 << 10 | 27 << 15, RTL930X_SMI_PORT0_5_ADDR + 4 * 4);
// Ports 24 and 25 live on SMI bus 1 and 2
sw_w32_mask(0x3 << 16, 0x1 << 16, RTL930X_SMI_PORT16_27_POLLING_SEL);
sw_w32_mask(0x3 << 18, 0x2 << 18, RTL930X_SMI_PORT16_27_POLLING_SEL);
// SMI bus 1 and 2 speak Clause 45 TODO: Configure from .dts
sw_w32_mask(0, BIT(17) | BIT(18), RTL930X_SMI_GLB_CTRL);
// Ports 24 and 25 are 2.5 Gig, set this type (1)
sw_w32_mask(0x7 << 12, 1 << 12, RTL930X_SMI_MAC_TYPE_CTRL);
sw_w32_mask(0x7 << 15, 1 << 15, RTL930X_SMI_MAC_TYPE_CTRL);
return 0;
}
static int rtl838x_mdio_init(struct rtl838x_eth_priv *priv)
{
struct device_node *mii_np;
int ret;
pr_debug("%s called\n", __func__);
mii_np = of_get_child_by_name(priv->pdev->dev.of_node, "mdio-bus");
if (!mii_np) {
dev_err(&priv->pdev->dev, "no %s child node found", "mdio-bus");
return -ENODEV;
}
if (!of_device_is_available(mii_np)) {
ret = -ENODEV;
goto err_put_node;
}
priv->mii_bus = devm_mdiobus_alloc(&priv->pdev->dev);
if (!priv->mii_bus) {
ret = -ENOMEM;
goto err_put_node;
}
switch(priv->family_id) {
case RTL8380_FAMILY_ID:
priv->mii_bus->name = "rtl838x-eth-mdio";
priv->mii_bus->read = rtl838x_mdio_read;
priv->mii_bus->write = rtl838x_mdio_write;
priv->mii_bus->reset = rtl838x_mdio_reset;
break;
case RTL8390_FAMILY_ID:
priv->mii_bus->name = "rtl839x-eth-mdio";
priv->mii_bus->read = rtl839x_mdio_read;
priv->mii_bus->write = rtl839x_mdio_write;
priv->mii_bus->reset = rtl839x_mdio_reset;
break;
case RTL9300_FAMILY_ID:
priv->mii_bus->name = "rtl930x-eth-mdio";
priv->mii_bus->read = rtl930x_mdio_read;
priv->mii_bus->write = rtl930x_mdio_write;
priv->mii_bus->reset = rtl930x_mdio_reset;
// priv->mii_bus->probe_capabilities = MDIOBUS_C22_C45; TODO for linux 5.9
break;
case RTL9310_FAMILY_ID:
priv->mii_bus->name = "rtl931x-eth-mdio";
priv->mii_bus->read = rtl931x_mdio_read;
priv->mii_bus->write = rtl931x_mdio_write;
priv->mii_bus->reset = rtl931x_mdio_reset;
// priv->mii_bus->probe_capabilities = MDIOBUS_C22_C45; TODO for linux 5.9
break;
}
priv->mii_bus->priv = priv;
priv->mii_bus->parent = &priv->pdev->dev;
snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%pOFn", mii_np);
ret = of_mdiobus_register(priv->mii_bus, mii_np);
err_put_node:
of_node_put(mii_np);
return ret;
}
static int rtl838x_mdio_remove(struct rtl838x_eth_priv *priv)
{
pr_debug("%s called\n", __func__);
if (!priv->mii_bus)
return 0;
mdiobus_unregister(priv->mii_bus);
mdiobus_free(priv->mii_bus);
return 0;
}
static netdev_features_t rtl838x_fix_features(struct net_device *dev,
netdev_features_t features)
{
return features;
}
static int rtl83xx_set_features(struct net_device *dev, netdev_features_t features)
{
struct rtl838x_eth_priv *priv = netdev_priv(dev);
if ((features ^ dev->features) & NETIF_F_RXCSUM) {
if (!(features & NETIF_F_RXCSUM))
sw_w32_mask(BIT(3), 0, priv->r->mac_port_ctrl(priv->cpu_port));
else
sw_w32_mask(0, BIT(4), priv->r->mac_port_ctrl(priv->cpu_port));
}
return 0;
}
static int rtl93xx_set_features(struct net_device *dev, netdev_features_t features)
{
struct rtl838x_eth_priv *priv = netdev_priv(dev);
if ((features ^ dev->features) & NETIF_F_RXCSUM) {
if (!(features & NETIF_F_RXCSUM))
sw_w32_mask(BIT(4), 0, priv->r->mac_port_ctrl(priv->cpu_port));
else
sw_w32_mask(0, BIT(4), priv->r->mac_port_ctrl(priv->cpu_port));
}
return 0;
}
static const struct net_device_ops rtl838x_eth_netdev_ops = {
.ndo_open = rtl838x_eth_open,
.ndo_stop = rtl838x_eth_stop,
.ndo_start_xmit = rtl838x_eth_tx,
.ndo_select_queue = rtl83xx_pick_tx_queue,
.ndo_set_mac_address = rtl838x_set_mac_address,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_rx_mode = rtl838x_eth_set_multicast_list,
.ndo_tx_timeout = rtl838x_eth_tx_timeout,
.ndo_set_features = rtl83xx_set_features,
.ndo_fix_features = rtl838x_fix_features,
};
static const struct net_device_ops rtl839x_eth_netdev_ops = {
.ndo_open = rtl838x_eth_open,
.ndo_stop = rtl838x_eth_stop,
.ndo_start_xmit = rtl838x_eth_tx,
.ndo_select_queue = rtl83xx_pick_tx_queue,
.ndo_set_mac_address = rtl838x_set_mac_address,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_rx_mode = rtl839x_eth_set_multicast_list,
.ndo_tx_timeout = rtl838x_eth_tx_timeout,
.ndo_set_features = rtl83xx_set_features,
.ndo_fix_features = rtl838x_fix_features,
};
static const struct net_device_ops rtl930x_eth_netdev_ops = {
.ndo_open = rtl838x_eth_open,
.ndo_stop = rtl838x_eth_stop,
.ndo_start_xmit = rtl838x_eth_tx,
.ndo_select_queue = rtl93xx_pick_tx_queue,
.ndo_set_mac_address = rtl838x_set_mac_address,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_rx_mode = rtl930x_eth_set_multicast_list,
.ndo_tx_timeout = rtl838x_eth_tx_timeout,
.ndo_set_features = rtl93xx_set_features,
.ndo_fix_features = rtl838x_fix_features,
};
static const struct net_device_ops rtl931x_eth_netdev_ops = {
.ndo_open = rtl838x_eth_open,
.ndo_stop = rtl838x_eth_stop,
.ndo_start_xmit = rtl838x_eth_tx,
.ndo_select_queue = rtl93xx_pick_tx_queue,
.ndo_set_mac_address = rtl838x_set_mac_address,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_rx_mode = rtl931x_eth_set_multicast_list,
.ndo_tx_timeout = rtl838x_eth_tx_timeout,
.ndo_set_features = rtl93xx_set_features,
.ndo_fix_features = rtl838x_fix_features,
};
static const struct phylink_mac_ops rtl838x_phylink_ops = {
.validate = rtl838x_validate,
.mac_link_state = rtl838x_mac_pcs_get_state,
.mac_an_restart = rtl838x_mac_an_restart,
.mac_config = rtl838x_mac_config,
.mac_link_down = rtl838x_mac_link_down,
.mac_link_up = rtl838x_mac_link_up,
};
static const struct ethtool_ops rtl838x_ethtool_ops = {
.get_link_ksettings = rtl838x_get_link_ksettings,
.set_link_ksettings = rtl838x_set_link_ksettings,
};
static int __init rtl838x_eth_probe(struct platform_device *pdev)
{
struct net_device *dev;
struct device_node *dn = pdev->dev.of_node;
struct rtl838x_eth_priv *priv;
struct resource *res, *mem;
phy_interface_t phy_mode;
struct phylink *phylink;
int err = 0, i, rxrings, rxringlen;
struct ring_b *ring;
pr_info("Probing RTL838X eth device pdev: %x, dev: %x\n",
(u32)pdev, (u32)(&(pdev->dev)));
if (!dn) {
dev_err(&pdev->dev, "No DT found\n");
return -EINVAL;
}
rxrings = (soc_info.family == RTL8380_FAMILY_ID
|| soc_info.family == RTL8390_FAMILY_ID) ? 8 : 32;
rxrings = rxrings > MAX_RXRINGS ? MAX_RXRINGS : rxrings;
rxringlen = MAX_ENTRIES / rxrings;
rxringlen = rxringlen > MAX_RXLEN ? MAX_RXLEN : rxringlen;
dev = alloc_etherdev_mqs(sizeof(struct rtl838x_eth_priv), TXRINGS, rxrings);
if (!dev) {
err = -ENOMEM;
goto err_free;
}
SET_NETDEV_DEV(dev, &pdev->dev);
priv = netdev_priv(dev);
/* obtain buffer memory space */
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (res) {
mem = devm_request_mem_region(&pdev->dev, res->start,
resource_size(res), res->name);
if (!mem) {
dev_err(&pdev->dev, "cannot request memory space\n");
err = -ENXIO;
goto err_free;
}
dev->mem_start = mem->start;
dev->mem_end = mem->end;
} else {
dev_err(&pdev->dev, "cannot request IO resource\n");
err = -ENXIO;
goto err_free;
}
/* Allocate buffer memory */
priv->membase = dmam_alloc_coherent(&pdev->dev, rxrings * rxringlen * RING_BUFFER
+ sizeof(struct ring_b) + sizeof(struct notify_b),
(void *)&dev->mem_start, GFP_KERNEL);
if (!priv->membase) {
dev_err(&pdev->dev, "cannot allocate DMA buffer\n");
err = -ENOMEM;
goto err_free;
}
// Allocate ring-buffer space at the end of the allocated memory
ring = priv->membase;
ring->rx_space = priv->membase + sizeof(struct ring_b) + sizeof(struct notify_b);
spin_lock_init(&priv->lock);
/* obtain device IRQ number */
res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (!res) {
dev_err(&pdev->dev, "cannot obtain IRQ, using default 24\n");
dev->irq = 24;
} else {
dev->irq = res->start;
}
dev->ethtool_ops = &rtl838x_ethtool_ops;
dev->min_mtu = ETH_ZLEN;
dev->max_mtu = 1536;
dev->features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM;
dev->hw_features = NETIF_F_RXCSUM;
priv->id = soc_info.id;
priv->family_id = soc_info.family;
if (priv->id) {
pr_info("Found SoC ID: %4x: %s, family %x\n",
priv->id, soc_info.name, priv->family_id);
} else {
pr_err("Unknown chip id (%04x)\n", priv->id);
return -ENODEV;
}
switch (priv->family_id) {
case RTL8380_FAMILY_ID:
priv->cpu_port = RTL838X_CPU_PORT;
priv->r = &rtl838x_reg;
dev->netdev_ops = &rtl838x_eth_netdev_ops;
break;
case RTL8390_FAMILY_ID:
priv->cpu_port = RTL839X_CPU_PORT;
priv->r = &rtl839x_reg;
dev->netdev_ops = &rtl839x_eth_netdev_ops;
break;
case RTL9300_FAMILY_ID:
priv->cpu_port = RTL930X_CPU_PORT;
priv->r = &rtl930x_reg;
dev->netdev_ops = &rtl930x_eth_netdev_ops;
break;
case RTL9310_FAMILY_ID:
priv->cpu_port = RTL931X_CPU_PORT;
priv->r = &rtl931x_reg;
dev->netdev_ops = &rtl931x_eth_netdev_ops;
break;
default:
pr_err("Unknown SoC family\n");
return -ENODEV;
}
priv->rxringlen = rxringlen;
priv->rxrings = rxrings;
rtl8380_init_mac(priv);
/* try to get mac address in the following order:
* 1) from device tree data
* 2) from internal registers set by bootloader
*/
of_get_mac_address(pdev->dev.of_node, dev->dev_addr);
if (is_valid_ether_addr(dev->dev_addr))) {
rtl838x_set_mac_hw(dev, (u8 *)dev->dev_addr);
} else {
dev->dev_addr[0] = (sw_r32(priv->r->mac) >> 8) & 0xff;
dev->dev_addr[1] = sw_r32(priv->r->mac) & 0xff;
dev->dev_addr[2] = (sw_r32(priv->r->mac + 4) >> 24) & 0xff;
dev->dev_addr[3] = (sw_r32(priv->r->mac + 4) >> 16) & 0xff;
dev->dev_addr[4] = (sw_r32(priv->r->mac + 4) >> 8) & 0xff;
dev->dev_addr[5] = sw_r32(priv->r->mac + 4) & 0xff;
}
/* if the address is invalid, use a random value */
if (!is_valid_ether_addr(dev->dev_addr)) {
struct sockaddr sa = { AF_UNSPEC };
netdev_warn(dev, "Invalid MAC address, using random\n");
eth_hw_addr_random(dev);
memcpy(sa.sa_data, dev->dev_addr, ETH_ALEN);
if (rtl838x_set_mac_address(dev, &sa))
netdev_warn(dev, "Failed to set MAC address.\n");
}
pr_info("Using MAC %08x%08x\n", sw_r32(priv->r->mac),
sw_r32(priv->r->mac + 4));
strcpy(dev->name, "eth%d");
priv->pdev = pdev;
priv->netdev = dev;
err = rtl838x_mdio_init(priv);
if (err)
goto err_free;
err = register_netdev(dev);
if (err)
goto err_free;
for (i = 0; i < priv->rxrings; i++) {
priv->rx_qs[i].id = i;
priv->rx_qs[i].priv = priv;
netif_napi_add(dev, &priv->rx_qs[i].napi, rtl838x_poll_rx, 64);
}
platform_set_drvdata(pdev, dev);
phy_mode = of_get_phy_mode(dn);
if (phy_mode < 0) {
dev_err(&pdev->dev, "incorrect phy-mode\n");
err = -EINVAL;
goto err_free;
}
priv->phylink_config.dev = &dev->dev;
priv->phylink_config.type = PHYLINK_NETDEV;
phylink = phylink_create(&priv->phylink_config, pdev->dev.fwnode,
phy_mode, &rtl838x_phylink_ops);
if (IS_ERR(phylink)) {
err = PTR_ERR(phylink);
goto err_free;
}
priv->phylink = phylink;
return 0;
err_free:
pr_err("Error setting up netdev, freeing it again.\n");
free_netdev(dev);
return err;
}
static int rtl838x_eth_remove(struct platform_device *pdev)
{
struct net_device *dev = platform_get_drvdata(pdev);
struct rtl838x_eth_priv *priv = netdev_priv(dev);
int i;
if (dev) {
pr_info("Removing platform driver for rtl838x-eth\n");
rtl838x_mdio_remove(priv);
rtl838x_hw_stop(priv);
netif_tx_stop_all_queues(dev);
for (i = 0; i < priv->rxrings; i++)
netif_napi_del(&priv->rx_qs[i].napi);
unregister_netdev(dev);
free_netdev(dev);
}
return 0;
}
static const struct of_device_id rtl838x_eth_of_ids[] = {
{ .compatible = "realtek,rtl838x-eth"},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, rtl838x_eth_of_ids);
static struct platform_driver rtl838x_eth_driver = {
.probe = rtl838x_eth_probe,
.remove = rtl838x_eth_remove,
.driver = {
.name = "rtl838x-eth",
.pm = NULL,
.of_match_table = rtl838x_eth_of_ids,
},
};
module_platform_driver(rtl838x_eth_driver);
MODULE_AUTHOR("B. Koblitz");
MODULE_DESCRIPTION("RTL838X SoC Ethernet Driver");
MODULE_LICENSE("GPL");