1
0
mirror of https://git.openwrt.org/openwrt/openwrt.git synced 2024-06-13 18:53:52 +02:00
openwrt/target/linux/ipq40xx/files/drivers/net/dsa/qca/qca8k-ipq4019.c
Aleksander Jan Bajkowski 7365e6b00a kernel: remove obsolete kernel version switches
This removes unneeded kernel version switches from the targets after
kernel 5.10 has been dropped.

Signed-off-by: Aleksander Jan Bajkowski <olek2@wp.pl>
2023-05-20 15:19:14 +02:00

1656 lines
41 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2009 Felix Fietkau <nbd@nbd.name>
* Copyright (C) 2011-2012, 2020-2021 Gabor Juhos <juhosg@openwrt.org>
* Copyright (c) 2015, 2019, The Linux Foundation. All rights reserved.
* Copyright (c) 2016 John Crispin <john@phrozen.org>
* Copyright (c) 2021 Robert Marko <robert.marko@sartura.hr>
*/
#include <linux/version.h>
#include <linux/etherdevice.h>
#include <linux/if_bridge.h>
#include <linux/mdio.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/of_platform.h>
#include <linux/phy.h>
#include <linux/phylink.h>
#include <linux/reset.h>
#include <net/dsa.h>
#include "qca8k-ipq4019.h"
#define MIB_DESC(_s, _o, _n) \
{ \
.size = (_s), \
.offset = (_o), \
.name = (_n), \
}
static const struct qca8k_mib_desc ar8327_mib[] = {
MIB_DESC(1, 0x00, "RxBroad"),
MIB_DESC(1, 0x04, "RxPause"),
MIB_DESC(1, 0x08, "RxMulti"),
MIB_DESC(1, 0x0c, "RxFcsErr"),
MIB_DESC(1, 0x10, "RxAlignErr"),
MIB_DESC(1, 0x14, "RxRunt"),
MIB_DESC(1, 0x18, "RxFragment"),
MIB_DESC(1, 0x1c, "Rx64Byte"),
MIB_DESC(1, 0x20, "Rx128Byte"),
MIB_DESC(1, 0x24, "Rx256Byte"),
MIB_DESC(1, 0x28, "Rx512Byte"),
MIB_DESC(1, 0x2c, "Rx1024Byte"),
MIB_DESC(1, 0x30, "Rx1518Byte"),
MIB_DESC(1, 0x34, "RxMaxByte"),
MIB_DESC(1, 0x38, "RxTooLong"),
MIB_DESC(2, 0x3c, "RxGoodByte"),
MIB_DESC(2, 0x44, "RxBadByte"),
MIB_DESC(1, 0x4c, "RxOverFlow"),
MIB_DESC(1, 0x50, "Filtered"),
MIB_DESC(1, 0x54, "TxBroad"),
MIB_DESC(1, 0x58, "TxPause"),
MIB_DESC(1, 0x5c, "TxMulti"),
MIB_DESC(1, 0x60, "TxUnderRun"),
MIB_DESC(1, 0x64, "Tx64Byte"),
MIB_DESC(1, 0x68, "Tx128Byte"),
MIB_DESC(1, 0x6c, "Tx256Byte"),
MIB_DESC(1, 0x70, "Tx512Byte"),
MIB_DESC(1, 0x74, "Tx1024Byte"),
MIB_DESC(1, 0x78, "Tx1518Byte"),
MIB_DESC(1, 0x7c, "TxMaxByte"),
MIB_DESC(1, 0x80, "TxOverSize"),
MIB_DESC(2, 0x84, "TxByte"),
MIB_DESC(1, 0x8c, "TxCollision"),
MIB_DESC(1, 0x90, "TxAbortCol"),
MIB_DESC(1, 0x94, "TxMultiCol"),
MIB_DESC(1, 0x98, "TxSingleCol"),
MIB_DESC(1, 0x9c, "TxExcDefer"),
MIB_DESC(1, 0xa0, "TxDefer"),
MIB_DESC(1, 0xa4, "TxLateCol"),
MIB_DESC(1, 0xa8, "RXUnicast"),
MIB_DESC(1, 0xac, "TXunicast"),
};
static int
qca8k_read(struct qca8k_priv *priv, u32 reg, u32 *val)
{
return regmap_read(priv->regmap, reg, val);
}
static int
qca8k_write(struct qca8k_priv *priv, u32 reg, u32 val)
{
return regmap_write(priv->regmap, reg, val);
}
static int
qca8k_rmw(struct qca8k_priv *priv, u32 reg, u32 mask, u32 write_val)
{
return regmap_update_bits(priv->regmap, reg, mask, write_val);
}
static int
qca8k_reg_set(struct qca8k_priv *priv, u32 reg, u32 val)
{
return regmap_set_bits(priv->regmap, reg, val);
}
static int
qca8k_reg_clear(struct qca8k_priv *priv, u32 reg, u32 val)
{
return regmap_clear_bits(priv->regmap, reg, val);
}
static const struct regmap_range qca8k_readable_ranges[] = {
regmap_reg_range(0x0000, 0x00e4), /* Global control */
regmap_reg_range(0x0100, 0x0168), /* EEE control */
regmap_reg_range(0x0200, 0x0270), /* Parser control */
regmap_reg_range(0x0400, 0x0454), /* ACL */
regmap_reg_range(0x0600, 0x0718), /* Lookup */
regmap_reg_range(0x0800, 0x0b70), /* QM */
regmap_reg_range(0x0c00, 0x0c80), /* PKT */
regmap_reg_range(0x0e00, 0x0e98), /* L3 */
regmap_reg_range(0x1000, 0x10ac), /* MIB - Port0 */
regmap_reg_range(0x1100, 0x11ac), /* MIB - Port1 */
regmap_reg_range(0x1200, 0x12ac), /* MIB - Port2 */
regmap_reg_range(0x1300, 0x13ac), /* MIB - Port3 */
regmap_reg_range(0x1400, 0x14ac), /* MIB - Port4 */
regmap_reg_range(0x1500, 0x15ac), /* MIB - Port5 */
regmap_reg_range(0x1600, 0x16ac), /* MIB - Port6 */
};
static const struct regmap_access_table qca8k_readable_table = {
.yes_ranges = qca8k_readable_ranges,
.n_yes_ranges = ARRAY_SIZE(qca8k_readable_ranges),
};
static struct regmap_config qca8k_ipq4019_regmap_config = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
.max_register = 0x16ac, /* end MIB - Port6 range */
.rd_table = &qca8k_readable_table,
};
static struct regmap_config qca8k_ipq4019_psgmii_phy_regmap_config = {
.name = "psgmii-phy",
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
.max_register = 0x7fc,
};
static int
qca8k_busy_wait(struct qca8k_priv *priv, u32 reg, u32 mask)
{
u32 val;
return regmap_read_poll_timeout(priv->regmap, reg, val,
!(val & mask),
0,
QCA8K_BUSY_WAIT_TIMEOUT);
}
static int
qca8k_fdb_read(struct qca8k_priv *priv, struct qca8k_fdb *fdb)
{
u32 reg[4], val;
int i, ret;
/* load the ARL table into an array */
for (i = 0; i < 4; i++) {
ret = qca8k_read(priv, QCA8K_REG_ATU_DATA0 + (i * 4), &val);
if (ret < 0)
return ret;
reg[i] = val;
}
/* vid - 83:72 */
fdb->vid = (reg[2] >> QCA8K_ATU_VID_S) & QCA8K_ATU_VID_M;
/* aging - 67:64 */
fdb->aging = reg[2] & QCA8K_ATU_STATUS_M;
/* portmask - 54:48 */
fdb->port_mask = (reg[1] >> QCA8K_ATU_PORT_S) & QCA8K_ATU_PORT_M;
/* mac - 47:0 */
fdb->mac[0] = (reg[1] >> QCA8K_ATU_ADDR0_S) & 0xff;
fdb->mac[1] = reg[1] & 0xff;
fdb->mac[2] = (reg[0] >> QCA8K_ATU_ADDR2_S) & 0xff;
fdb->mac[3] = (reg[0] >> QCA8K_ATU_ADDR3_S) & 0xff;
fdb->mac[4] = (reg[0] >> QCA8K_ATU_ADDR4_S) & 0xff;
fdb->mac[5] = reg[0] & 0xff;
return 0;
}
static void
qca8k_fdb_write(struct qca8k_priv *priv, u16 vid, u8 port_mask, const u8 *mac,
u8 aging)
{
u32 reg[3] = { 0 };
int i;
/* vid - 83:72 */
reg[2] = (vid & QCA8K_ATU_VID_M) << QCA8K_ATU_VID_S;
/* aging - 67:64 */
reg[2] |= aging & QCA8K_ATU_STATUS_M;
/* portmask - 54:48 */
reg[1] = (port_mask & QCA8K_ATU_PORT_M) << QCA8K_ATU_PORT_S;
/* mac - 47:0 */
reg[1] |= mac[0] << QCA8K_ATU_ADDR0_S;
reg[1] |= mac[1];
reg[0] |= mac[2] << QCA8K_ATU_ADDR2_S;
reg[0] |= mac[3] << QCA8K_ATU_ADDR3_S;
reg[0] |= mac[4] << QCA8K_ATU_ADDR4_S;
reg[0] |= mac[5];
/* load the array into the ARL table */
for (i = 0; i < 3; i++)
qca8k_write(priv, QCA8K_REG_ATU_DATA0 + (i * 4), reg[i]);
}
static int
qca8k_fdb_access(struct qca8k_priv *priv, enum qca8k_fdb_cmd cmd, int port)
{
u32 reg;
int ret;
/* Set the command and FDB index */
reg = QCA8K_ATU_FUNC_BUSY;
reg |= cmd;
if (port >= 0) {
reg |= QCA8K_ATU_FUNC_PORT_EN;
reg |= (port & QCA8K_ATU_FUNC_PORT_M) << QCA8K_ATU_FUNC_PORT_S;
}
/* Write the function register triggering the table access */
ret = qca8k_write(priv, QCA8K_REG_ATU_FUNC, reg);
if (ret)
return ret;
/* wait for completion */
ret = qca8k_busy_wait(priv, QCA8K_REG_ATU_FUNC, QCA8K_ATU_FUNC_BUSY);
if (ret)
return ret;
/* Check for table full violation when adding an entry */
if (cmd == QCA8K_FDB_LOAD) {
ret = qca8k_read(priv, QCA8K_REG_ATU_FUNC, &reg);
if (ret < 0)
return ret;
if (reg & QCA8K_ATU_FUNC_FULL)
return -1;
}
return 0;
}
static int
qca8k_fdb_next(struct qca8k_priv *priv, struct qca8k_fdb *fdb, int port)
{
int ret;
qca8k_fdb_write(priv, fdb->vid, fdb->port_mask, fdb->mac, fdb->aging);
ret = qca8k_fdb_access(priv, QCA8K_FDB_NEXT, port);
if (ret < 0)
return ret;
return qca8k_fdb_read(priv, fdb);
}
static int
qca8k_fdb_add(struct qca8k_priv *priv, const u8 *mac, u16 port_mask,
u16 vid, u8 aging)
{
int ret;
mutex_lock(&priv->reg_mutex);
qca8k_fdb_write(priv, vid, port_mask, mac, aging);
ret = qca8k_fdb_access(priv, QCA8K_FDB_LOAD, -1);
mutex_unlock(&priv->reg_mutex);
return ret;
}
static int
qca8k_fdb_del(struct qca8k_priv *priv, const u8 *mac, u16 port_mask, u16 vid)
{
int ret;
mutex_lock(&priv->reg_mutex);
qca8k_fdb_write(priv, vid, port_mask, mac, 0);
ret = qca8k_fdb_access(priv, QCA8K_FDB_PURGE, -1);
mutex_unlock(&priv->reg_mutex);
return ret;
}
static void
qca8k_fdb_flush(struct qca8k_priv *priv)
{
mutex_lock(&priv->reg_mutex);
qca8k_fdb_access(priv, QCA8K_FDB_FLUSH, -1);
mutex_unlock(&priv->reg_mutex);
}
static int
qca8k_vlan_access(struct qca8k_priv *priv, enum qca8k_vlan_cmd cmd, u16 vid)
{
u32 reg;
int ret;
/* Set the command and VLAN index */
reg = QCA8K_VTU_FUNC1_BUSY;
reg |= cmd;
reg |= vid << QCA8K_VTU_FUNC1_VID_S;
/* Write the function register triggering the table access */
ret = qca8k_write(priv, QCA8K_REG_VTU_FUNC1, reg);
if (ret)
return ret;
/* wait for completion */
ret = qca8k_busy_wait(priv, QCA8K_REG_VTU_FUNC1, QCA8K_VTU_FUNC1_BUSY);
if (ret)
return ret;
/* Check for table full violation when adding an entry */
if (cmd == QCA8K_VLAN_LOAD) {
ret = qca8k_read(priv, QCA8K_REG_VTU_FUNC1, &reg);
if (ret < 0)
return ret;
if (reg & QCA8K_VTU_FUNC1_FULL)
return -ENOMEM;
}
return 0;
}
static int
qca8k_vlan_add(struct qca8k_priv *priv, u8 port, u16 vid, bool untagged)
{
u32 reg;
int ret;
/*
We do the right thing with VLAN 0 and treat it as untagged while
preserving the tag on egress.
*/
if (vid == 0)
return 0;
mutex_lock(&priv->reg_mutex);
ret = qca8k_vlan_access(priv, QCA8K_VLAN_READ, vid);
if (ret < 0)
goto out;
ret = qca8k_read(priv, QCA8K_REG_VTU_FUNC0, &reg);
if (ret < 0)
goto out;
reg |= QCA8K_VTU_FUNC0_VALID | QCA8K_VTU_FUNC0_IVL_EN;
reg &= ~(QCA8K_VTU_FUNC0_EG_MODE_MASK << QCA8K_VTU_FUNC0_EG_MODE_S(port));
if (untagged)
reg |= QCA8K_VTU_FUNC0_EG_MODE_UNTAG <<
QCA8K_VTU_FUNC0_EG_MODE_S(port);
else
reg |= QCA8K_VTU_FUNC0_EG_MODE_TAG <<
QCA8K_VTU_FUNC0_EG_MODE_S(port);
ret = qca8k_write(priv, QCA8K_REG_VTU_FUNC0, reg);
if (ret)
goto out;
ret = qca8k_vlan_access(priv, QCA8K_VLAN_LOAD, vid);
out:
mutex_unlock(&priv->reg_mutex);
return ret;
}
static int
qca8k_vlan_del(struct qca8k_priv *priv, u8 port, u16 vid)
{
u32 reg, mask;
int ret, i;
bool del;
mutex_lock(&priv->reg_mutex);
ret = qca8k_vlan_access(priv, QCA8K_VLAN_READ, vid);
if (ret < 0)
goto out;
ret = qca8k_read(priv, QCA8K_REG_VTU_FUNC0, &reg);
if (ret < 0)
goto out;
reg &= ~(3 << QCA8K_VTU_FUNC0_EG_MODE_S(port));
reg |= QCA8K_VTU_FUNC0_EG_MODE_NOT <<
QCA8K_VTU_FUNC0_EG_MODE_S(port);
/* Check if we're the last member to be removed */
del = true;
for (i = 0; i < QCA8K_NUM_PORTS; i++) {
mask = QCA8K_VTU_FUNC0_EG_MODE_NOT;
mask <<= QCA8K_VTU_FUNC0_EG_MODE_S(i);
if ((reg & mask) != mask) {
del = false;
break;
}
}
if (del) {
ret = qca8k_vlan_access(priv, QCA8K_VLAN_PURGE, vid);
} else {
ret = qca8k_write(priv, QCA8K_REG_VTU_FUNC0, reg);
if (ret)
goto out;
ret = qca8k_vlan_access(priv, QCA8K_VLAN_LOAD, vid);
}
out:
mutex_unlock(&priv->reg_mutex);
return ret;
}
static int
qca8k_mib_init(struct qca8k_priv *priv)
{
int ret;
mutex_lock(&priv->reg_mutex);
ret = qca8k_reg_set(priv, QCA8K_REG_MIB, QCA8K_MIB_FLUSH | QCA8K_MIB_BUSY);
if (ret)
goto exit;
ret = qca8k_busy_wait(priv, QCA8K_REG_MIB, QCA8K_MIB_BUSY);
if (ret)
goto exit;
ret = qca8k_reg_set(priv, QCA8K_REG_MIB, QCA8K_MIB_CPU_KEEP);
if (ret)
goto exit;
ret = qca8k_write(priv, QCA8K_REG_MODULE_EN, QCA8K_MODULE_EN_MIB);
exit:
mutex_unlock(&priv->reg_mutex);
return ret;
}
static void
qca8k_port_set_status(struct qca8k_priv *priv, int port, int enable)
{
u32 mask = QCA8K_PORT_STATUS_TXMAC | QCA8K_PORT_STATUS_RXMAC;
/* Port 0 is internally connected to the CPU
* TODO: Probably check for RGMII as well if it doesnt work
* in RGMII mode.
*/
if (port > QCA8K_CPU_PORT)
mask |= QCA8K_PORT_STATUS_LINK_AUTO;
if (enable)
qca8k_reg_set(priv, QCA8K_REG_PORT_STATUS(port), mask);
else
qca8k_reg_clear(priv, QCA8K_REG_PORT_STATUS(port), mask);
}
static int
qca8k_setup_port(struct dsa_switch *ds, int port)
{
struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv;
int ret;
/* CPU port gets connected to all user ports of the switch */
if (dsa_is_cpu_port(ds, port)) {
ret = qca8k_rmw(priv, QCA8K_PORT_LOOKUP_CTRL(QCA8K_CPU_PORT),
QCA8K_PORT_LOOKUP_MEMBER, dsa_user_ports(ds));
if (ret)
return ret;
/* Disable CPU ARP Auto-learning by default */
ret = qca8k_reg_clear(priv, QCA8K_PORT_LOOKUP_CTRL(QCA8K_CPU_PORT),
QCA8K_PORT_LOOKUP_LEARN);
if (ret)
return ret;
}
/* Individual user ports get connected to CPU port only */
if (dsa_is_user_port(ds, port)) {
int shift = 16 * (port % 2);
ret = qca8k_rmw(priv, QCA8K_PORT_LOOKUP_CTRL(port),
QCA8K_PORT_LOOKUP_MEMBER,
BIT(QCA8K_CPU_PORT));
if (ret)
return ret;
/* Enable ARP Auto-learning by default */
ret = qca8k_reg_set(priv, QCA8K_PORT_LOOKUP_CTRL(port),
QCA8K_PORT_LOOKUP_LEARN);
if (ret)
return ret;
/* For port based vlans to work we need to set the
* default egress vid
*/
ret = qca8k_rmw(priv, QCA8K_EGRESS_VLAN(port),
0xfff << shift,
QCA8K_PORT_VID_DEF << shift);
if (ret)
return ret;
ret = qca8k_write(priv, QCA8K_REG_PORT_VLAN_CTRL0(port),
QCA8K_PORT_VLAN_CVID(QCA8K_PORT_VID_DEF) |
QCA8K_PORT_VLAN_SVID(QCA8K_PORT_VID_DEF));
if (ret)
return ret;
}
return 0;
}
static int
qca8k_setup(struct dsa_switch *ds)
{
struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv;
int ret, i;
/* Make sure that port 0 is the cpu port */
if (!dsa_is_cpu_port(ds, 0)) {
dev_err(priv->dev, "port 0 is not the CPU port");
return -EINVAL;
}
/* Enable CPU Port */
ret = qca8k_reg_set(priv, QCA8K_REG_GLOBAL_FW_CTRL0,
QCA8K_GLOBAL_FW_CTRL0_CPU_PORT_EN);
if (ret) {
dev_err(priv->dev, "failed enabling CPU port");
return ret;
}
/* Enable MIB counters */
ret = qca8k_mib_init(priv);
if (ret)
dev_warn(priv->dev, "MIB init failed");
/* Enable QCA header mode on the cpu port */
ret = qca8k_write(priv, QCA8K_REG_PORT_HDR_CTRL(QCA8K_CPU_PORT),
QCA8K_PORT_HDR_CTRL_ALL << QCA8K_PORT_HDR_CTRL_TX_S |
QCA8K_PORT_HDR_CTRL_ALL << QCA8K_PORT_HDR_CTRL_RX_S);
if (ret) {
dev_err(priv->dev, "failed enabling QCA header mode");
return ret;
}
/* Disable forwarding by default on all ports */
for (i = 0; i < QCA8K_NUM_PORTS; i++) {
ret = qca8k_rmw(priv, QCA8K_PORT_LOOKUP_CTRL(i),
QCA8K_PORT_LOOKUP_MEMBER, 0);
if (ret)
return ret;
}
/* Disable MAC by default on all ports */
for (i = 1; i < QCA8K_NUM_PORTS; i++)
qca8k_port_set_status(priv, i, 0);
/* Forward all unknown frames to CPU port for Linux processing */
ret = qca8k_write(priv, QCA8K_REG_GLOBAL_FW_CTRL1,
BIT(QCA8K_CPU_PORT) << QCA8K_GLOBAL_FW_CTRL1_IGMP_DP_S |
BIT(QCA8K_CPU_PORT) << QCA8K_GLOBAL_FW_CTRL1_BC_DP_S |
BIT(QCA8K_CPU_PORT) << QCA8K_GLOBAL_FW_CTRL1_MC_DP_S |
BIT(QCA8K_CPU_PORT) << QCA8K_GLOBAL_FW_CTRL1_UC_DP_S);
if (ret)
return ret;
/* Setup connection between CPU port & user ports */
for (i = 0; i < QCA8K_NUM_PORTS; i++) {
ret = qca8k_setup_port(ds, i);
if (ret)
return ret;
}
/* Setup our port MTUs to match power on defaults */
for (i = 0; i < QCA8K_NUM_PORTS; i++)
/* Set per port MTU to 1500 as the MTU change function
* will add the overhead and if its set to 1518 then it
* will apply the overhead again and we will end up with
* MTU of 1536 instead of 1518
*/
priv->port_mtu[i] = ETH_DATA_LEN;
ret = qca8k_write(priv, QCA8K_MAX_FRAME_SIZE, ETH_FRAME_LEN + ETH_FCS_LEN);
if (ret)
dev_warn(priv->dev, "failed setting MTU settings");
/* Flush the FDB table */
qca8k_fdb_flush(priv);
/* We don't have interrupts for link changes, so we need to poll */
ds->pcs_poll = true;
/* CPU port HW learning doesnt work correctly, so let DSA handle it */
ds->assisted_learning_on_cpu_port = true;
return 0;
}
static int psgmii_vco_calibrate(struct qca8k_priv *priv)
{
int val, ret;
if (!priv->psgmii_ethphy) {
dev_err(priv->dev, "PSGMII eth PHY missing, calibration failed!\n");
return -ENODEV;
}
/* Fix PSGMII RX 20bit */
ret = phy_write(priv->psgmii_ethphy, MII_BMCR, 0x5b);
/* Reset PHY PSGMII */
ret = phy_write(priv->psgmii_ethphy, MII_BMCR, 0x1b);
/* Release PHY PSGMII reset */
ret = phy_write(priv->psgmii_ethphy, MII_BMCR, 0x5b);
/* Poll for VCO PLL calibration finish - Malibu(QCA8075) */
ret = phy_read_mmd_poll_timeout(priv->psgmii_ethphy,
MDIO_MMD_PMAPMD,
0x28, val,
(val & BIT(0)),
10000, 1000000,
false);
if (ret) {
dev_err(priv->dev, "QCA807x PSGMII VCO calibration PLL not ready\n");
return ret;
}
mdelay(50);
/* Freeze PSGMII RX CDR */
ret = phy_write(priv->psgmii_ethphy, MII_RESV2, 0x2230);
/* Start PSGMIIPHY VCO PLL calibration */
ret = regmap_set_bits(priv->psgmii,
PSGMIIPHY_VCO_CALIBRATION_CONTROL_REGISTER_1,
PSGMIIPHY_REG_PLL_VCO_CALIB_RESTART);
/* Poll for PSGMIIPHY PLL calibration finish - Dakota(IPQ40xx) */
ret = regmap_read_poll_timeout(priv->psgmii,
PSGMIIPHY_VCO_CALIBRATION_CONTROL_REGISTER_2,
val, val & PSGMIIPHY_REG_PLL_VCO_CALIB_READY,
10000, 1000000);
if (ret) {
dev_err(priv->dev, "IPQ PSGMIIPHY VCO calibration PLL not ready\n");
return ret;
}
mdelay(50);
/* Release PSGMII RX CDR */
ret = phy_write(priv->psgmii_ethphy, MII_RESV2, 0x3230);
/* Release PSGMII RX 20bit */
ret = phy_write(priv->psgmii_ethphy, MII_BMCR, 0x5f);
mdelay(200);
return ret;
}
static void
qca8k_switch_port_loopback_on_off(struct qca8k_priv *priv, int port, int on)
{
u32 val = QCA8K_PORT_LOOKUP_LOOPBACK;
if (on == 0)
val = 0;
qca8k_rmw(priv, QCA8K_PORT_LOOKUP_CTRL(port),
QCA8K_PORT_LOOKUP_LOOPBACK, val);
}
static int
qca8k_wait_for_phy_link_state(struct phy_device *phy, int need_status)
{
int a;
u16 status;
for (a = 0; a < 100; a++) {
status = phy_read(phy, MII_QCA8075_SSTATUS);
status &= QCA8075_PHY_SPEC_STATUS_LINK;
status = !!status;
if (status == need_status)
return 0;
mdelay(8);
}
return -1;
}
static void
qca8k_phy_loopback_on_off(struct qca8k_priv *priv, struct phy_device *phy,
int sw_port, int on)
{
if (on) {
phy_write(phy, MII_BMCR, BMCR_ANENABLE | BMCR_RESET);
phy_modify(phy, MII_BMCR, BMCR_PDOWN, BMCR_PDOWN);
qca8k_wait_for_phy_link_state(phy, 0);
qca8k_write(priv, QCA8K_REG_PORT_STATUS(sw_port), 0);
phy_write(phy, MII_BMCR,
BMCR_SPEED1000 |
BMCR_FULLDPLX |
BMCR_LOOPBACK);
qca8k_wait_for_phy_link_state(phy, 1);
qca8k_write(priv, QCA8K_REG_PORT_STATUS(sw_port),
QCA8K_PORT_STATUS_SPEED_1000 |
QCA8K_PORT_STATUS_TXMAC |
QCA8K_PORT_STATUS_RXMAC |
QCA8K_PORT_STATUS_DUPLEX);
qca8k_rmw(priv, QCA8K_PORT_LOOKUP_CTRL(sw_port),
QCA8K_PORT_LOOKUP_STATE_FORWARD,
QCA8K_PORT_LOOKUP_STATE_FORWARD);
} else { /* off */
qca8k_write(priv, QCA8K_REG_PORT_STATUS(sw_port), 0);
qca8k_rmw(priv, QCA8K_PORT_LOOKUP_CTRL(sw_port),
QCA8K_PORT_LOOKUP_STATE_DISABLED,
QCA8K_PORT_LOOKUP_STATE_DISABLED);
phy_write(phy, MII_BMCR, BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_RESET);
/* turn off the power of the phys - so that unused
ports do not raise links */
phy_modify(phy, MII_BMCR, BMCR_PDOWN, BMCR_PDOWN);
}
}
static void
qca8k_phy_pkt_gen_prep(struct qca8k_priv *priv, struct phy_device *phy,
int pkts_num, int on)
{
if (on) {
/* enable CRC checker and packets counters */
phy_write_mmd(phy, MDIO_MMD_AN, QCA8075_MMD7_CRC_AND_PKTS_COUNT, 0);
phy_write_mmd(phy, MDIO_MMD_AN, QCA8075_MMD7_CRC_AND_PKTS_COUNT,
QCA8075_MMD7_CNT_FRAME_CHK_EN | QCA8075_MMD7_CNT_SELFCLR);
qca8k_wait_for_phy_link_state(phy, 1);
/* packet number */
phy_write_mmd(phy, MDIO_MMD_AN, QCA8075_MMD7_PKT_GEN_PKT_NUMB, pkts_num);
/* pkt size - 1504 bytes + 20 bytes */
phy_write_mmd(phy, MDIO_MMD_AN, QCA8075_MMD7_PKT_GEN_PKT_SIZE, 1504);
} else { /* off */
/* packet number */
phy_write_mmd(phy, MDIO_MMD_AN, QCA8075_MMD7_PKT_GEN_PKT_NUMB, 0);
/* disable CRC checker and packet counter */
phy_write_mmd(phy, MDIO_MMD_AN, QCA8075_MMD7_CRC_AND_PKTS_COUNT, 0);
/* disable traffic gen */
phy_write_mmd(phy, MDIO_MMD_AN, QCA8075_MMD7_PKT_GEN_CTRL, 0);
}
}
static void
qca8k_wait_for_phy_pkt_gen_fin(struct qca8k_priv *priv, struct phy_device *phy)
{
int val;
/* wait for all traffic end: 4096(pkt num)*1524(size)*8ns(125MHz)=49938us */
phy_read_mmd_poll_timeout(phy, MDIO_MMD_AN, QCA8075_MMD7_PKT_GEN_CTRL,
val, !(val & QCA8075_MMD7_PKT_GEN_INPROGR),
50000, 1000000, true);
}
static void
qca8k_start_phy_pkt_gen(struct phy_device *phy)
{
/* start traffic gen */
phy_write_mmd(phy, MDIO_MMD_AN, QCA8075_MMD7_PKT_GEN_CTRL,
QCA8075_MMD7_PKT_GEN_START | QCA8075_MMD7_PKT_GEN_INPROGR);
}
static int
qca8k_start_all_phys_pkt_gens(struct qca8k_priv *priv)
{
struct phy_device *phy;
phy = phy_device_create(priv->bus, QCA8075_MDIO_BRDCST_PHY_ADDR,
0, 0, NULL);
if (!phy) {
dev_err(priv->dev, "unable to create mdio broadcast PHY(0x%x)\n",
QCA8075_MDIO_BRDCST_PHY_ADDR);
return -ENODEV;
}
qca8k_start_phy_pkt_gen(phy);
phy_device_free(phy);
return 0;
}
static int
qca8k_get_phy_pkt_gen_test_result(struct phy_device *phy, int pkts_num)
{
u32 tx_ok, tx_error;
u32 rx_ok, rx_error;
u32 tx_ok_high16;
u32 rx_ok_high16;
u32 tx_all_ok, rx_all_ok;
/* check counters */
tx_ok = phy_read_mmd(phy, MDIO_MMD_AN, QCA8075_MMD7_EG_FRAME_RECV_CNT_LO);
tx_ok_high16 = phy_read_mmd(phy, MDIO_MMD_AN, QCA8075_MMD7_EG_FRAME_RECV_CNT_HI);
tx_error = phy_read_mmd(phy, MDIO_MMD_AN, QCA8075_MMD7_EG_FRAME_ERR_CNT);
rx_ok = phy_read_mmd(phy, MDIO_MMD_AN, QCA8075_MMD7_IG_FRAME_RECV_CNT_LO);
rx_ok_high16 = phy_read_mmd(phy, MDIO_MMD_AN, QCA8075_MMD7_IG_FRAME_RECV_CNT_HI);
rx_error = phy_read_mmd(phy, MDIO_MMD_AN, QCA8075_MMD7_IG_FRAME_ERR_CNT);
tx_all_ok = tx_ok + (tx_ok_high16 << 16);
rx_all_ok = rx_ok + (rx_ok_high16 << 16);
if (tx_all_ok < pkts_num)
return -1;
if(rx_all_ok < pkts_num)
return -2;
if(tx_error)
return -3;
if(rx_error)
return -4;
return 0; /* test is ok */
}
static
void qca8k_phy_broadcast_write_on_off(struct qca8k_priv *priv,
struct phy_device *phy, int on)
{
u32 val;
val = phy_read_mmd(phy, MDIO_MMD_AN, QCA8075_MMD7_MDIO_BRDCST_WRITE);
if (on == 0)
val &= ~QCA8075_MMD7_MDIO_BRDCST_WRITE_EN;
else
val |= QCA8075_MMD7_MDIO_BRDCST_WRITE_EN;
phy_write_mmd(phy, MDIO_MMD_AN, QCA8075_MMD7_MDIO_BRDCST_WRITE, val);
}
static int
qca8k_test_dsa_port_for_errors(struct qca8k_priv *priv, struct phy_device *phy,
int port, int test_phase)
{
int res = 0;
const int test_pkts_num = QCA8075_PKT_GEN_PKTS_COUNT;
if (test_phase == 1) { /* start test preps */
qca8k_phy_loopback_on_off(priv, phy, port, 1);
qca8k_switch_port_loopback_on_off(priv, port, 1);
qca8k_phy_broadcast_write_on_off(priv, phy, 1);
qca8k_phy_pkt_gen_prep(priv, phy, test_pkts_num, 1);
} else if (test_phase == 2) {
/* wait for test results, collect it and cleanup */
qca8k_wait_for_phy_pkt_gen_fin(priv, phy);
res = qca8k_get_phy_pkt_gen_test_result(phy, test_pkts_num);
qca8k_phy_pkt_gen_prep(priv, phy, test_pkts_num, 0);
qca8k_phy_broadcast_write_on_off(priv, phy, 0);
qca8k_switch_port_loopback_on_off(priv, port, 0);
qca8k_phy_loopback_on_off(priv, phy, port, 0);
}
return res;
}
static int
qca8k_do_dsa_sw_ports_self_test(struct qca8k_priv *priv, int parallel_test)
{
struct device_node *dn = priv->dev->of_node;
struct device_node *ports, *port;
struct device_node *phy_dn;
struct phy_device *phy;
int reg, err = 0, test_phase;
u32 tests_result = 0;
ports = of_get_child_by_name(dn, "ports");
if (!ports) {
dev_err(priv->dev, "no ports child node found\n");
return -EINVAL;
}
for (test_phase = 1; test_phase <= 2; test_phase++) {
if (parallel_test && test_phase == 2) {
err = qca8k_start_all_phys_pkt_gens(priv);
if (err)
goto error;
}
for_each_available_child_of_node(ports, port) {
err = of_property_read_u32(port, "reg", &reg);
if (err)
goto error;
if (reg >= QCA8K_NUM_PORTS) {
err = -EINVAL;
goto error;
}
phy_dn = of_parse_phandle(port, "phy-handle", 0);
if (phy_dn) {
phy = of_phy_find_device(phy_dn);
of_node_put(phy_dn);
if (phy) {
int result;
result = qca8k_test_dsa_port_for_errors(priv,
phy, reg, test_phase);
if (!parallel_test && test_phase == 1)
qca8k_start_phy_pkt_gen(phy);
put_device(&phy->mdio.dev);
if (test_phase == 2) {
tests_result <<= 1;
if (result)
tests_result |= 1;
}
}
}
}
}
end:
of_node_put(ports);
qca8k_fdb_flush(priv);
return tests_result;
error:
tests_result |= 0xf000;
goto end;
}
static int
psgmii_vco_calibrate_and_test(struct dsa_switch *ds)
{
int ret, a, test_result;
struct qca8k_priv *priv = ds->priv;
for (a = 0; a <= QCA8K_PSGMII_CALB_NUM; a++) {
ret = psgmii_vco_calibrate(priv);
if (ret)
return ret;
/* first we run serial test */
test_result = qca8k_do_dsa_sw_ports_self_test(priv, 0);
/* and if it is ok then we run the test in parallel */
if (!test_result)
test_result = qca8k_do_dsa_sw_ports_self_test(priv, 1);
if (!test_result) {
if (a > 0) {
dev_warn(priv->dev, "PSGMII work was stabilized after %d "
"calibration retries !\n", a);
}
return 0;
} else {
schedule();
if (a > 0 && a % 10 == 0) {
dev_err(priv->dev, "PSGMII work is unstable !!! "
"Let's try to wait a bit ... %d\n", a);
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(msecs_to_jiffies(a * 100));
}
}
}
panic("PSGMII work is unstable !!! "
"Repeated recalibration attempts did not help(0x%x) !\n",
test_result);
return -EFAULT;
}
static int
ipq4019_psgmii_configure(struct dsa_switch *ds)
{
struct qca8k_priv *priv = ds->priv;
int ret;
if (!priv->psgmii_calibrated) {
ret = psgmii_vco_calibrate_and_test(ds);
ret = regmap_clear_bits(priv->psgmii, PSGMIIPHY_MODE_CONTROL,
PSGMIIPHY_MODE_ATHR_CSCO_MODE_25M);
ret = regmap_write(priv->psgmii, PSGMIIPHY_TX_CONTROL,
PSGMIIPHY_TX_CONTROL_MAGIC_VALUE);
priv->psgmii_calibrated = true;
return ret;
}
return 0;
}
static void
qca8k_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
const struct phylink_link_state *state)
{
struct qca8k_priv *priv = ds->priv;
switch (port) {
case 0:
/* CPU port, no configuration needed */
return;
case 1:
case 2:
case 3:
if (state->interface == PHY_INTERFACE_MODE_PSGMII)
if (ipq4019_psgmii_configure(ds))
dev_err(ds->dev, "PSGMII configuration failed!\n");
return;
case 4:
case 5:
if (state->interface == PHY_INTERFACE_MODE_RGMII ||
state->interface == PHY_INTERFACE_MODE_RGMII_ID ||
state->interface == PHY_INTERFACE_MODE_RGMII_RXID ||
state->interface == PHY_INTERFACE_MODE_RGMII_TXID) {
qca8k_reg_set(priv, QCA8K_REG_RGMII_CTRL, QCA8K_RGMII_CTRL_CLK);
}
if (state->interface == PHY_INTERFACE_MODE_PSGMII)
if (ipq4019_psgmii_configure(ds))
dev_err(ds->dev, "PSGMII configuration failed!\n");
return;
default:
dev_err(ds->dev, "%s: unsupported port: %i\n", __func__, port);
return;
}
}
static void
qca8k_phylink_validate(struct dsa_switch *ds, int port,
unsigned long *supported,
struct phylink_link_state *state)
{
__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
switch (port) {
case 0: /* CPU port */
if (state->interface != PHY_INTERFACE_MODE_INTERNAL)
goto unsupported;
break;
case 1:
case 2:
case 3:
/* Only PSGMII mode is supported */
if (state->interface != PHY_INTERFACE_MODE_PSGMII)
goto unsupported;
break;
case 4:
case 5:
/* PSGMII and RGMII modes are supported */
if (state->interface != PHY_INTERFACE_MODE_PSGMII &&
state->interface != PHY_INTERFACE_MODE_RGMII &&
state->interface != PHY_INTERFACE_MODE_RGMII_ID &&
state->interface != PHY_INTERFACE_MODE_RGMII_RXID &&
state->interface != PHY_INTERFACE_MODE_RGMII_TXID)
goto unsupported;
break;
default:
unsupported:
dev_warn(ds->dev, "interface '%s' (%d) on port %d is not supported\n",
phy_modes(state->interface), state->interface, port);
linkmode_zero(supported);
return;
}
if (port == 0) {
phylink_set_port_modes(mask);
phylink_set(mask, 1000baseT_Full);
phylink_set(mask, Pause);
phylink_set(mask, Asym_Pause);
linkmode_and(supported, supported, mask);
linkmode_and(state->advertising, state->advertising, mask);
} else {
/* Simply copy what PHYs tell us */
linkmode_copy(state->advertising, supported);
}
}
static int
qca8k_phylink_mac_link_state(struct dsa_switch *ds, int port,
struct phylink_link_state *state)
{
struct qca8k_priv *priv = ds->priv;
u32 reg;
int ret;
ret = qca8k_read(priv, QCA8K_REG_PORT_STATUS(port), &reg);
if (ret < 0)
return ret;
state->link = !!(reg & QCA8K_PORT_STATUS_LINK_UP);
state->an_complete = state->link;
state->an_enabled = !!(reg & QCA8K_PORT_STATUS_LINK_AUTO);
state->duplex = (reg & QCA8K_PORT_STATUS_DUPLEX) ? DUPLEX_FULL :
DUPLEX_HALF;
switch (reg & QCA8K_PORT_STATUS_SPEED) {
case QCA8K_PORT_STATUS_SPEED_10:
state->speed = SPEED_10;
break;
case QCA8K_PORT_STATUS_SPEED_100:
state->speed = SPEED_100;
break;
case QCA8K_PORT_STATUS_SPEED_1000:
state->speed = SPEED_1000;
break;
default:
state->speed = SPEED_UNKNOWN;
break;
}
state->pause = MLO_PAUSE_NONE;
if (reg & QCA8K_PORT_STATUS_RXFLOW)
state->pause |= MLO_PAUSE_RX;
if (reg & QCA8K_PORT_STATUS_TXFLOW)
state->pause |= MLO_PAUSE_TX;
return 1;
}
static void
qca8k_phylink_mac_link_down(struct dsa_switch *ds, int port, unsigned int mode,
phy_interface_t interface)
{
struct qca8k_priv *priv = ds->priv;
qca8k_port_set_status(priv, port, 0);
}
static void
qca8k_phylink_mac_link_up(struct dsa_switch *ds, int port, unsigned int mode,
phy_interface_t interface, struct phy_device *phydev,
int speed, int duplex, bool tx_pause, bool rx_pause)
{
struct qca8k_priv *priv = ds->priv;
u32 reg;
if (phylink_autoneg_inband(mode)) {
reg = QCA8K_PORT_STATUS_LINK_AUTO;
} else {
switch (speed) {
case SPEED_10:
reg = QCA8K_PORT_STATUS_SPEED_10;
break;
case SPEED_100:
reg = QCA8K_PORT_STATUS_SPEED_100;
break;
case SPEED_1000:
reg = QCA8K_PORT_STATUS_SPEED_1000;
break;
default:
reg = QCA8K_PORT_STATUS_LINK_AUTO;
break;
}
if (duplex == DUPLEX_FULL)
reg |= QCA8K_PORT_STATUS_DUPLEX;
if (rx_pause || dsa_is_cpu_port(ds, port))
reg |= QCA8K_PORT_STATUS_RXFLOW;
if (tx_pause || dsa_is_cpu_port(ds, port))
reg |= QCA8K_PORT_STATUS_TXFLOW;
}
reg |= QCA8K_PORT_STATUS_TXMAC | QCA8K_PORT_STATUS_RXMAC;
qca8k_write(priv, QCA8K_REG_PORT_STATUS(port), reg);
}
static void
qca8k_get_strings(struct dsa_switch *ds, int port, u32 stringset, uint8_t *data)
{
int i;
if (stringset != ETH_SS_STATS)
return;
for (i = 0; i < ARRAY_SIZE(ar8327_mib); i++)
strncpy(data + i * ETH_GSTRING_LEN, ar8327_mib[i].name,
ETH_GSTRING_LEN);
}
static void
qca8k_get_ethtool_stats(struct dsa_switch *ds, int port,
uint64_t *data)
{
struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv;
const struct qca8k_mib_desc *mib;
u32 reg, i, val;
u32 hi = 0;
int ret;
for (i = 0; i < ARRAY_SIZE(ar8327_mib); i++) {
mib = &ar8327_mib[i];
reg = QCA8K_PORT_MIB_COUNTER(port) + mib->offset;
ret = qca8k_read(priv, reg, &val);
if (ret < 0)
continue;
if (mib->size == 2) {
ret = qca8k_read(priv, reg + 4, &hi);
if (ret < 0)
continue;
}
data[i] = val;
if (mib->size == 2)
data[i] |= (u64)hi << 32;
}
}
static int
qca8k_get_sset_count(struct dsa_switch *ds, int port, int sset)
{
if (sset != ETH_SS_STATS)
return 0;
return ARRAY_SIZE(ar8327_mib);
}
static int
qca8k_set_mac_eee(struct dsa_switch *ds, int port, struct ethtool_eee *eee)
{
struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv;
u32 lpi_en = QCA8K_REG_EEE_CTRL_LPI_EN(port);
u32 reg;
int ret;
mutex_lock(&priv->reg_mutex);
ret = qca8k_read(priv, QCA8K_REG_EEE_CTRL, &reg);
if (ret < 0)
goto exit;
if (eee->eee_enabled)
reg |= lpi_en;
else
reg &= ~lpi_en;
ret = qca8k_write(priv, QCA8K_REG_EEE_CTRL, reg);
exit:
mutex_unlock(&priv->reg_mutex);
return ret;
}
static int
qca8k_get_mac_eee(struct dsa_switch *ds, int port, struct ethtool_eee *e)
{
/* Nothing to do on the port's MAC */
return 0;
}
static void
qca8k_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
{
struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv;
u32 stp_state;
switch (state) {
case BR_STATE_DISABLED:
stp_state = QCA8K_PORT_LOOKUP_STATE_DISABLED;
break;
case BR_STATE_BLOCKING:
stp_state = QCA8K_PORT_LOOKUP_STATE_BLOCKING;
break;
case BR_STATE_LISTENING:
stp_state = QCA8K_PORT_LOOKUP_STATE_LISTENING;
break;
case BR_STATE_LEARNING:
stp_state = QCA8K_PORT_LOOKUP_STATE_LEARNING;
break;
case BR_STATE_FORWARDING:
default:
stp_state = QCA8K_PORT_LOOKUP_STATE_FORWARD;
break;
}
qca8k_rmw(priv, QCA8K_PORT_LOOKUP_CTRL(port),
QCA8K_PORT_LOOKUP_STATE_MASK, stp_state);
}
static int
qca8k_port_bridge_join(struct dsa_switch *ds, int port, struct net_device *br)
{
struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv;
int port_mask, cpu_port;
int i, ret;
cpu_port = dsa_to_port(ds, port)->cpu_dp->index;
port_mask = BIT(cpu_port);
for (i = 0; i < QCA8K_NUM_PORTS; i++) {
if (dsa_is_cpu_port(ds, i))
continue;
if (dsa_to_port(ds, i)->bridge_dev != br)
continue;
/* Add this port to the portvlan mask of the other ports
* in the bridge
*/
ret = qca8k_reg_set(priv,
QCA8K_PORT_LOOKUP_CTRL(i),
BIT(port));
if (ret)
return ret;
if (i != port)
port_mask |= BIT(i);
}
/* Add all other ports to this ports portvlan mask */
ret = qca8k_rmw(priv, QCA8K_PORT_LOOKUP_CTRL(port),
QCA8K_PORT_LOOKUP_MEMBER, port_mask);
return ret;
}
static void
qca8k_port_bridge_leave(struct dsa_switch *ds, int port, struct net_device *br)
{
struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv;
int cpu_port, i;
cpu_port = dsa_to_port(ds, port)->cpu_dp->index;
for (i = 0; i < QCA8K_NUM_PORTS; i++) {
if (dsa_is_cpu_port(ds, i))
continue;
if (dsa_to_port(ds, i)->bridge_dev != br)
continue;
/* Remove this port to the portvlan mask of the other ports
* in the bridge
*/
qca8k_reg_clear(priv,
QCA8K_PORT_LOOKUP_CTRL(i),
BIT(port));
}
/* Set the cpu port to be the only one in the portvlan mask of
* this port
*/
qca8k_rmw(priv, QCA8K_PORT_LOOKUP_CTRL(port),
QCA8K_PORT_LOOKUP_MEMBER, BIT(cpu_port));
}
static int
qca8k_port_enable(struct dsa_switch *ds, int port,
struct phy_device *phy)
{
struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv;
qca8k_port_set_status(priv, port, 1);
priv->port_sts[port].enabled = 1;
if (dsa_is_user_port(ds, port))
phy_support_asym_pause(phy);
return 0;
}
static void
qca8k_port_disable(struct dsa_switch *ds, int port)
{
struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv;
qca8k_port_set_status(priv, port, 0);
priv->port_sts[port].enabled = 0;
}
static int
qca8k_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
{
struct qca8k_priv *priv = ds->priv;
int i, mtu = 0;
priv->port_mtu[port] = new_mtu;
for (i = 0; i < QCA8K_NUM_PORTS; i++)
if (priv->port_mtu[i] > mtu)
mtu = priv->port_mtu[i];
/* Include L2 header / FCS length */
return qca8k_write(priv, QCA8K_MAX_FRAME_SIZE, mtu + ETH_HLEN + ETH_FCS_LEN);
}
static int
qca8k_port_max_mtu(struct dsa_switch *ds, int port)
{
return QCA8K_MAX_MTU;
}
static int
qca8k_port_fdb_insert(struct qca8k_priv *priv, const u8 *addr,
u16 port_mask, u16 vid)
{
/* Set the vid to the port vlan id if no vid is set */
if (!vid)
vid = QCA8K_PORT_VID_DEF;
return qca8k_fdb_add(priv, addr, port_mask, vid,
QCA8K_ATU_STATUS_STATIC);
}
static int
qca8k_port_fdb_add(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid)
{
struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv;
u16 port_mask = BIT(port);
return qca8k_port_fdb_insert(priv, addr, port_mask, vid);
}
static int
qca8k_port_fdb_del(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid)
{
struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv;
u16 port_mask = BIT(port);
if (!vid)
vid = QCA8K_PORT_VID_DEF;
return qca8k_fdb_del(priv, addr, port_mask, vid);
}
static int
qca8k_port_fdb_dump(struct dsa_switch *ds, int port,
dsa_fdb_dump_cb_t *cb, void *data)
{
struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv;
struct qca8k_fdb _fdb = { 0 };
int cnt = QCA8K_NUM_FDB_RECORDS;
bool is_static;
int ret = 0;
mutex_lock(&priv->reg_mutex);
while (cnt-- && !qca8k_fdb_next(priv, &_fdb, port)) {
if (!_fdb.aging)
break;
is_static = (_fdb.aging == QCA8K_ATU_STATUS_STATIC);
ret = cb(_fdb.mac, _fdb.vid, is_static, data);
if (ret)
break;
}
mutex_unlock(&priv->reg_mutex);
return 0;
}
static int
qca8k_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering,
struct netlink_ext_ack *extack)
{
struct qca8k_priv *priv = ds->priv;
if (vlan_filtering) {
qca8k_rmw(priv, QCA8K_PORT_LOOKUP_CTRL(port),
QCA8K_PORT_LOOKUP_VLAN_MODE,
QCA8K_PORT_LOOKUP_VLAN_MODE_SECURE);
} else {
qca8k_rmw(priv, QCA8K_PORT_LOOKUP_CTRL(port),
QCA8K_PORT_LOOKUP_VLAN_MODE,
QCA8K_PORT_LOOKUP_VLAN_MODE_NONE);
}
return 0;
}
static int
qca8k_port_vlan_add(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan,
struct netlink_ext_ack *extack)
{
bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
struct qca8k_priv *priv = ds->priv;
int ret = 0;
ret = qca8k_vlan_add(priv, port, vlan->vid, untagged);
if (ret) {
dev_err(priv->dev, "Failed to add VLAN to port %d (%d)", port, ret);
return ret;
}
if (pvid) {
int shift = 16 * (port % 2);
qca8k_rmw(priv, QCA8K_EGRESS_VLAN(port),
0xfff << shift, vlan->vid << shift);
qca8k_write(priv, QCA8K_REG_PORT_VLAN_CTRL0(port),
QCA8K_PORT_VLAN_CVID(vlan->vid) |
QCA8K_PORT_VLAN_SVID(vlan->vid));
}
return 0;
}
static int
qca8k_port_vlan_del(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan)
{
struct qca8k_priv *priv = ds->priv;
int ret = 0;
ret = qca8k_vlan_del(priv, port, vlan->vid);
if (ret)
dev_err(priv->dev, "Failed to delete VLAN from port %d (%d)", port, ret);
return ret;
}
static enum dsa_tag_protocol
qca8k_get_tag_protocol(struct dsa_switch *ds, int port,
enum dsa_tag_protocol mp)
{
return DSA_TAG_PROTO_IPQ4019;
}
static const struct dsa_switch_ops qca8k_switch_ops = {
.get_tag_protocol = qca8k_get_tag_protocol,
.setup = qca8k_setup,
.get_strings = qca8k_get_strings,
.get_ethtool_stats = qca8k_get_ethtool_stats,
.get_sset_count = qca8k_get_sset_count,
.get_mac_eee = qca8k_get_mac_eee,
.set_mac_eee = qca8k_set_mac_eee,
.port_enable = qca8k_port_enable,
.port_disable = qca8k_port_disable,
.port_change_mtu = qca8k_port_change_mtu,
.port_max_mtu = qca8k_port_max_mtu,
.port_stp_state_set = qca8k_port_stp_state_set,
.port_bridge_join = qca8k_port_bridge_join,
.port_bridge_leave = qca8k_port_bridge_leave,
.port_fdb_add = qca8k_port_fdb_add,
.port_fdb_del = qca8k_port_fdb_del,
.port_fdb_dump = qca8k_port_fdb_dump,
.port_vlan_filtering = qca8k_port_vlan_filtering,
.port_vlan_add = qca8k_port_vlan_add,
.port_vlan_del = qca8k_port_vlan_del,
.phylink_validate = qca8k_phylink_validate,
.phylink_mac_link_state = qca8k_phylink_mac_link_state,
.phylink_mac_config = qca8k_phylink_mac_config,
.phylink_mac_link_down = qca8k_phylink_mac_link_down,
.phylink_mac_link_up = qca8k_phylink_mac_link_up,
};
static int
qca8k_ipq4019_probe(struct platform_device *pdev)
{
struct qca8k_priv *priv;
void __iomem *base, *psgmii;
struct device_node *np = pdev->dev.of_node, *mdio_np, *psgmii_ethphy_np;
int ret;
priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->dev = &pdev->dev;
base = devm_platform_ioremap_resource_byname(pdev, "base");
if (IS_ERR(base))
return PTR_ERR(base);
priv->regmap = devm_regmap_init_mmio(priv->dev, base,
&qca8k_ipq4019_regmap_config);
if (IS_ERR(priv->regmap)) {
ret = PTR_ERR(priv->regmap);
dev_err(priv->dev, "base regmap initialization failed, %d\n", ret);
return ret;
}
psgmii = devm_platform_ioremap_resource_byname(pdev, "psgmii_phy");
if (IS_ERR(psgmii))
return PTR_ERR(psgmii);
priv->psgmii = devm_regmap_init_mmio(priv->dev, psgmii,
&qca8k_ipq4019_psgmii_phy_regmap_config);
if (IS_ERR(priv->psgmii)) {
ret = PTR_ERR(priv->psgmii);
dev_err(priv->dev, "PSGMII regmap initialization failed, %d\n", ret);
return ret;
}
mdio_np = of_parse_phandle(np, "mdio", 0);
if (!mdio_np) {
dev_err(&pdev->dev, "unable to get MDIO bus phandle\n");
of_node_put(mdio_np);
return -EINVAL;
}
priv->bus = of_mdio_find_bus(mdio_np);
of_node_put(mdio_np);
if (!priv->bus) {
dev_err(&pdev->dev, "unable to find MDIO bus\n");
return -EPROBE_DEFER;
}
psgmii_ethphy_np = of_parse_phandle(np, "psgmii-ethphy", 0);
if (!psgmii_ethphy_np) {
dev_dbg(&pdev->dev, "unable to get PSGMII eth PHY phandle\n");
of_node_put(psgmii_ethphy_np);
}
if (psgmii_ethphy_np) {
priv->psgmii_ethphy = of_phy_find_device(psgmii_ethphy_np);
of_node_put(psgmii_ethphy_np);
if (!priv->psgmii_ethphy) {
dev_err(&pdev->dev, "unable to get PSGMII eth PHY\n");
return -ENODEV;
}
}
priv->ds = devm_kzalloc(priv->dev, sizeof(*priv->ds), GFP_KERNEL);
if (!priv->ds)
return -ENOMEM;
priv->ds->dev = priv->dev;
priv->ds->num_ports = QCA8K_NUM_PORTS;
priv->ds->priv = priv;
priv->ops = qca8k_switch_ops;
priv->ds->ops = &priv->ops;
mutex_init(&priv->reg_mutex);
platform_set_drvdata(pdev, priv);
return dsa_register_switch(priv->ds);
}
static int
qca8k_ipq4019_remove(struct platform_device *pdev)
{
struct qca8k_priv *priv = dev_get_drvdata(&pdev->dev);
int i;
if (!priv)
return 0;
for (i = 0; i < QCA8K_NUM_PORTS; i++)
qca8k_port_set_status(priv, i, 0);
dsa_unregister_switch(priv->ds);
dev_set_drvdata(&pdev->dev, NULL);
return 0;
}
static const struct of_device_id qca8k_ipq4019_of_match[] = {
{ .compatible = "qca,ipq4019-qca8337n" },
{ /* sentinel */ },
};
static struct platform_driver qca8k_ipq4019_driver = {
.probe = qca8k_ipq4019_probe,
.remove = qca8k_ipq4019_remove,
.driver = {
.name = "qca8k-ipq4019",
.of_match_table = qca8k_ipq4019_of_match,
},
};
module_platform_driver(qca8k_ipq4019_driver);
MODULE_AUTHOR("Mathieu Olivari, John Crispin <john@phrozen.org>");
MODULE_AUTHOR("Gabor Juhos <j4g8y7@gmail.com>, Robert Marko <robert.marko@sartura.hr>");
MODULE_DESCRIPTION("Qualcomm IPQ4019 built-in switch driver");
MODULE_LICENSE("GPL v2");