openwrt/target/linux/atheros/files/drivers/net/ar2313/ar2313.c

1395 lines
34 KiB
C

/*
* ar2313.c: Linux driver for the Atheros AR231x Ethernet device.
*
* Copyright (C) 2004 by Sameer Dekate <sdekate@arubanetworks.com>
* Copyright (C) 2006 Imre Kaloz <kaloz@openwrt.org>
* Copyright (C) 2006-2007 Felix Fietkau <nbd@openwrt.org>
*
* Thanks to Atheros for providing hardware and documentation
* enabling me to write this driver.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* Additional credits:
* This code is taken from John Taylor's Sibyte driver and then
* modified for the AR2313.
*/
#include <linux/autoconf.h>
#include <linux/module.h>
#include <linux/version.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/sockios.h>
#include <linux/pkt_sched.h>
#include <linux/compile.h>
#include <linux/mii.h>
#include <linux/phy.h>
#include <linux/ethtool.h>
#include <linux/ctype.h>
#include <linux/platform_device.h>
#include <net/sock.h>
#include <net/ip.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/byteorder.h>
#include <asm/uaccess.h>
#include <asm/bootinfo.h>
#define AR2313_MTU 1692
#define AR2313_PRIOS 1
#define AR2313_QUEUES (2*AR2313_PRIOS)
#define AR2313_DESCR_ENTRIES 64
#undef INDEX_DEBUG
#define DEBUG 0
#define DEBUG_TX 0
#define DEBUG_RX 0
#define DEBUG_INT 0
#define DEBUG_MC 0
#define DEBUG_ERR 1
#ifndef min
#define min(a,b) (((a)<(b))?(a):(b))
#endif
#ifndef SMP_CACHE_BYTES
#define SMP_CACHE_BYTES L1_CACHE_BYTES
#endif
#define AR2313_MBOX_SET_BIT 0x8
#define BOARD_IDX_STATIC 0
#define BOARD_IDX_OVERFLOW -1
#include "dma.h"
#include "ar2313.h"
/*
* New interrupt handler strategy:
*
* An old interrupt handler worked using the traditional method of
* replacing an skbuff with a new one when a packet arrives. However
* the rx rings do not need to contain a static number of buffer
* descriptors, thus it makes sense to move the memory allocation out
* of the main interrupt handler and do it in a bottom half handler
* and only allocate new buffers when the number of buffers in the
* ring is below a certain threshold. In order to avoid starving the
* NIC under heavy load it is however necessary to force allocation
* when hitting a minimum threshold. The strategy for alloction is as
* follows:
*
* RX_LOW_BUF_THRES - allocate buffers in the bottom half
* RX_PANIC_LOW_THRES - we are very low on buffers, allocate
* the buffers in the interrupt handler
* RX_RING_THRES - maximum number of buffers in the rx ring
*
* One advantagous side effect of this allocation approach is that the
* entire rx processing can be done without holding any spin lock
* since the rx rings and registers are totally independent of the tx
* ring and its registers. This of course includes the kmalloc's of
* new skb's. Thus start_xmit can run in parallel with rx processing
* and the memory allocation on SMP systems.
*
* Note that running the skb reallocation in a bottom half opens up
* another can of races which needs to be handled properly. In
* particular it can happen that the interrupt handler tries to run
* the reallocation while the bottom half is either running on another
* CPU or was interrupted on the same CPU. To get around this the
* driver uses bitops to prevent the reallocation routines from being
* reentered.
*
* TX handling can also be done without holding any spin lock, wheee
* this is fun! since tx_csm is only written to by the interrupt
* handler.
*/
/*
* Threshold values for RX buffer allocation - the low water marks for
* when to start refilling the rings are set to 75% of the ring
* sizes. It seems to make sense to refill the rings entirely from the
* intrrupt handler once it gets below the panic threshold, that way
* we don't risk that the refilling is moved to another CPU when the
* one running the interrupt handler just got the slab code hot in its
* cache.
*/
#define RX_RING_SIZE AR2313_DESCR_ENTRIES
#define RX_PANIC_THRES (RX_RING_SIZE/4)
#define RX_LOW_THRES ((3*RX_RING_SIZE)/4)
#define CRC_LEN 4
#define RX_OFFSET 2
#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
#define VLAN_HDR 4
#else
#define VLAN_HDR 0
#endif
#define AR2313_BUFSIZE (AR2313_MTU + VLAN_HDR + ETH_HLEN + CRC_LEN + RX_OFFSET)
#ifdef MODULE
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Sameer Dekate <sdekate@arubanetworks.com>, Imre Kaloz <kaloz@openwrt.org>, Felix Fietkau <nbd@openwrt.org>");
MODULE_DESCRIPTION("AR2313 Ethernet driver");
#endif
#define virt_to_phys(x) ((u32)(x) & 0x1fffffff)
// prototypes
#ifdef TX_TIMEOUT
static void ar2313_tx_timeout(struct net_device *dev);
#endif
static void ar2313_halt(struct net_device *dev);
static void rx_tasklet_func(unsigned long data);
static void rx_tasklet_cleanup(struct net_device *dev);
static void ar2313_multicast_list(struct net_device *dev);
static int mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum);
static int mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum, u16 value);
static int mdiobus_reset(struct mii_bus *bus);
static int mdiobus_probe (struct net_device *dev);
static void ar2313_adjust_link(struct net_device *dev);
#ifndef ERR
#define ERR(fmt, args...) printk("%s: " fmt, __func__, ##args)
#endif
int __init ar2313_probe(struct platform_device *pdev)
{
struct net_device *dev;
struct ar2313_private *sp;
struct resource *res;
unsigned long ar_eth_base;
char buf[64];
dev = alloc_etherdev(sizeof(struct ar2313_private));
if (dev == NULL) {
printk(KERN_ERR
"ar2313: Unable to allocate net_device structure!\n");
return -ENOMEM;
}
platform_set_drvdata(pdev, dev);
sp = netdev_priv(dev);
sp->dev = dev;
sp->cfg = pdev->dev.platform_data;
sprintf(buf, "eth%d_membase", pdev->id);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, buf);
if (!res)
return -ENODEV;
sp->link = 0;
ar_eth_base = res->start;
sp->phy = sp->cfg->phy;
sprintf(buf, "eth%d_irq", pdev->id);
dev->irq = platform_get_irq_byname(pdev, buf);
spin_lock_init(&sp->lock);
/* initialize func pointers */
dev->open = &ar2313_open;
dev->stop = &ar2313_close;
dev->hard_start_xmit = &ar2313_start_xmit;
dev->set_multicast_list = &ar2313_multicast_list;
#ifdef TX_TIMEOUT
dev->tx_timeout = ar2313_tx_timeout;
dev->watchdog_timeo = AR2313_TX_TIMEOUT;
#endif
dev->do_ioctl = &ar2313_ioctl;
// SAMEER: do we need this?
dev->features |= NETIF_F_SG | NETIF_F_HIGHDMA;
tasklet_init(&sp->rx_tasklet, rx_tasklet_func, (unsigned long) dev);
tasklet_disable(&sp->rx_tasklet);
sp->eth_regs =
ioremap_nocache(virt_to_phys(ar_eth_base), sizeof(*sp->eth_regs));
if (!sp->eth_regs) {
printk("Can't remap eth registers\n");
return (-ENXIO);
}
/*
* When there's only one MAC, PHY regs are typically on ENET0,
* even though the MAC might be on ENET1.
* Needto remap PHY regs separately in this case
*/
if (virt_to_phys(ar_eth_base) == virt_to_phys(sp->phy_regs))
sp->phy_regs = sp->eth_regs;
else {
sp->phy_regs =
ioremap_nocache(virt_to_phys(sp->cfg->phy_base),
sizeof(*sp->phy_regs));
if (!sp->phy_regs) {
printk("Can't remap phy registers\n");
return (-ENXIO);
}
}
sp->dma_regs =
ioremap_nocache(virt_to_phys(ar_eth_base + 0x1000),
sizeof(*sp->dma_regs));
dev->base_addr = (unsigned int) sp->dma_regs;
if (!sp->dma_regs) {
printk("Can't remap DMA registers\n");
return (-ENXIO);
}
sp->int_regs = ioremap_nocache(virt_to_phys(sp->cfg->reset_base), 4);
if (!sp->int_regs) {
printk("Can't remap INTERRUPT registers\n");
return (-ENXIO);
}
strncpy(sp->name, "Atheros AR231x", sizeof(sp->name) - 1);
sp->name[sizeof(sp->name) - 1] = '\0';
memcpy(dev->dev_addr, sp->cfg->macaddr, 6);
sp->board_idx = BOARD_IDX_STATIC;
if (ar2313_init(dev)) {
/*
* ar2313_init() calls ar2313_init_cleanup() on error.
*/
kfree(dev);
return -ENODEV;
}
if (register_netdev(dev)) {
printk("%s: register_netdev failed\n", __func__);
return -1;
}
printk("%s: %s: %02x:%02x:%02x:%02x:%02x:%02x, irq %d\n",
dev->name, sp->name,
dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5], dev->irq);
sp->mii_bus.priv = dev;
sp->mii_bus.read = mdiobus_read;
sp->mii_bus.write = mdiobus_write;
sp->mii_bus.reset = mdiobus_reset;
sp->mii_bus.name = "ar2313_eth_mii";
sp->mii_bus.id = 0;
sp->mii_bus.irq = kmalloc(sizeof(int), GFP_KERNEL);
*sp->mii_bus.irq = PHY_POLL;
mdiobus_register(&sp->mii_bus);
if (mdiobus_probe(dev) != 0) {
printk(KERN_ERR "ar2313: mdiobus_probe failed");
rx_tasklet_cleanup(dev);
ar2313_init_cleanup(dev);
unregister_netdev(dev);
kfree(dev);
} else {
/* start link poll timer */
ar2313_setup_timer(dev);
}
return 0;
}
#if 0
static void ar2313_dump_regs(struct net_device *dev)
{
unsigned int *ptr, i;
struct ar2313_private *sp = netdev_priv(dev);
ptr = (unsigned int *) sp->eth_regs;
for (i = 0; i < (sizeof(ETHERNET_STRUCT) / sizeof(unsigned int));
i++, ptr++) {
printk("ENET: %08x = %08x\n", (int) ptr, *ptr);
}
ptr = (unsigned int *) sp->dma_regs;
for (i = 0; i < (sizeof(DMA) / sizeof(unsigned int)); i++, ptr++) {
printk("DMA: %08x = %08x\n", (int) ptr, *ptr);
}
ptr = (unsigned int *) sp->int_regs;
for (i = 0; i < (sizeof(INTERRUPT) / sizeof(unsigned int)); i++, ptr++) {
printk("INT: %08x = %08x\n", (int) ptr, *ptr);
}
for (i = 0; i < AR2313_DESCR_ENTRIES; i++) {
ar2313_descr_t *td = &sp->tx_ring[i];
printk("Tx desc %2d: %08x %08x %08x %08x\n", i,
td->status, td->devcs, td->addr, td->descr);
}
}
#endif
#ifdef TX_TIMEOUT
static void ar2313_tx_timeout(struct net_device *dev)
{
struct ar2313_private *sp = netdev_priv(dev);
unsigned long flags;
#if DEBUG_TX
printk("Tx timeout\n");
#endif
spin_lock_irqsave(&sp->lock, flags);
ar2313_restart(dev);
spin_unlock_irqrestore(&sp->lock, flags);
}
#endif
#if DEBUG_MC
static void printMcList(struct net_device *dev)
{
struct dev_mc_list *list = dev->mc_list;
int num = 0, i;
while (list) {
printk("%d MC ADDR ", num);
for (i = 0; i < list->dmi_addrlen; i++) {
printk(":%02x", list->dmi_addr[i]);
}
list = list->next;
printk("\n");
}
}
#endif
/*
* Set or clear the multicast filter for this adaptor.
* THIS IS ABSOLUTE CRAP, disabled
*/
static void ar2313_multicast_list(struct net_device *dev)
{
/*
* Always listen to broadcasts and
* treat IFF bits independently
*/
struct ar2313_private *sp = netdev_priv(dev);
unsigned int recognise;
recognise = sp->eth_regs->mac_control;
if (dev->flags & IFF_PROMISC) { /* set promiscuous mode */
recognise |= MAC_CONTROL_PR;
} else {
recognise &= ~MAC_CONTROL_PR;
}
if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 15)) {
#if DEBUG_MC
printMcList(dev);
printk("%s: all MULTICAST mc_count %d\n", __FUNCTION__,
dev->mc_count);
#endif
recognise |= MAC_CONTROL_PM; /* all multicast */
} else if (dev->mc_count > 0) {
#if DEBUG_MC
printMcList(dev);
printk("%s: mc_count %d\n", __FUNCTION__, dev->mc_count);
#endif
recognise |= MAC_CONTROL_PM; /* for the time being */
}
#if DEBUG_MC
printk("%s: setting %08x to %08x\n", __FUNCTION__, (int) sp->eth_regs,
recognise);
#endif
sp->eth_regs->mac_control = recognise;
}
static void rx_tasklet_cleanup(struct net_device *dev)
{
struct ar2313_private *sp = netdev_priv(dev);
/*
* Tasklet may be scheduled. Need to get it removed from the list
* since we're about to free the struct.
*/
sp->unloading = 1;
tasklet_enable(&sp->rx_tasklet);
tasklet_kill(&sp->rx_tasklet);
}
static int __exit ar2313_remove(struct platform_device *pdev)
{
struct net_device *dev = platform_get_drvdata(pdev);
rx_tasklet_cleanup(dev);
ar2313_init_cleanup(dev);
unregister_netdev(dev);
kfree(dev);
return 0;
}
/*
* Restart the AR2313 ethernet controller.
*/
static int ar2313_restart(struct net_device *dev)
{
/* disable interrupts */
disable_irq(dev->irq);
/* stop mac */
ar2313_halt(dev);
/* initialize */
ar2313_init(dev);
/* enable interrupts */
enable_irq(dev->irq);
return 0;
}
static struct platform_driver ar2313_driver = {
.driver.name = "ar531x-eth",
.probe = ar2313_probe,
.remove = ar2313_remove,
};
int __init ar2313_module_init(void)
{
return platform_driver_register(&ar2313_driver);
}
void __exit ar2313_module_cleanup(void)
{
platform_driver_unregister(&ar2313_driver);
}
module_init(ar2313_module_init);
module_exit(ar2313_module_cleanup);
static void ar2313_free_descriptors(struct net_device *dev)
{
struct ar2313_private *sp = netdev_priv(dev);
if (sp->rx_ring != NULL) {
kfree((void *) KSEG0ADDR(sp->rx_ring));
sp->rx_ring = NULL;
sp->tx_ring = NULL;
}
}
static int ar2313_allocate_descriptors(struct net_device *dev)
{
struct ar2313_private *sp = netdev_priv(dev);
int size;
int j;
ar2313_descr_t *space;
if (sp->rx_ring != NULL) {
printk("%s: already done.\n", __FUNCTION__);
return 0;
}
size =
(sizeof(ar2313_descr_t) * (AR2313_DESCR_ENTRIES * AR2313_QUEUES));
space = kmalloc(size, GFP_KERNEL);
if (space == NULL)
return 1;
/* invalidate caches */
dma_cache_inv((unsigned int) space, size);
/* now convert pointer to KSEG1 */
space = (ar2313_descr_t *) KSEG1ADDR(space);
memset((void *) space, 0, size);
sp->rx_ring = space;
space += AR2313_DESCR_ENTRIES;
sp->tx_ring = space;
space += AR2313_DESCR_ENTRIES;
/* Initialize the transmit Descriptors */
for (j = 0; j < AR2313_DESCR_ENTRIES; j++) {
ar2313_descr_t *td = &sp->tx_ring[j];
td->status = 0;
td->devcs = DMA_TX1_CHAINED;
td->addr = 0;
td->descr =
virt_to_phys(&sp->
tx_ring[(j + 1) & (AR2313_DESCR_ENTRIES - 1)]);
}
return 0;
}
/*
* Generic cleanup handling data allocated during init. Used when the
* module is unloaded or if an error occurs during initialization
*/
static void ar2313_init_cleanup(struct net_device *dev)
{
struct ar2313_private *sp = netdev_priv(dev);
struct sk_buff *skb;
int j;
ar2313_free_descriptors(dev);
if (sp->eth_regs)
iounmap((void *) sp->eth_regs);
if (sp->dma_regs)
iounmap((void *) sp->dma_regs);
if (sp->rx_skb) {
for (j = 0; j < AR2313_DESCR_ENTRIES; j++) {
skb = sp->rx_skb[j];
if (skb) {
sp->rx_skb[j] = NULL;
dev_kfree_skb(skb);
}
}
kfree(sp->rx_skb);
sp->rx_skb = NULL;
}
if (sp->tx_skb) {
for (j = 0; j < AR2313_DESCR_ENTRIES; j++) {
skb = sp->tx_skb[j];
if (skb) {
sp->tx_skb[j] = NULL;
dev_kfree_skb(skb);
}
}
kfree(sp->tx_skb);
sp->tx_skb = NULL;
}
}
static int ar2313_setup_timer(struct net_device *dev)
{
struct ar2313_private *sp = netdev_priv(dev);
init_timer(&sp->link_timer);
sp->link_timer.function = ar2313_link_timer_fn;
sp->link_timer.data = (int) dev;
sp->link_timer.expires = jiffies + HZ;
add_timer(&sp->link_timer);
return 0;
}
static void ar2313_link_timer_fn(unsigned long data)
{
struct net_device *dev = (struct net_device *) data;
struct ar2313_private *sp = netdev_priv(dev);
// see if the link status changed
// This was needed to make sure we set the PHY to the
// autonegotiated value of half or full duplex.
ar2313_check_link(dev);
// Loop faster when we don't have link.
// This was needed to speed up the AP bootstrap time.
if (sp->link == 0) {
mod_timer(&sp->link_timer, jiffies + HZ / 2);
} else {
mod_timer(&sp->link_timer, jiffies + LINK_TIMER);
}
}
static void ar2313_check_link(struct net_device *dev)
{
struct ar2313_private *sp = netdev_priv(dev);
u16 phyData;
phyData = mdiobus_read(&sp->mii_bus, sp->phy, MII_BMSR);
if (sp->phyData != phyData) {
if (phyData & BMSR_LSTATUS) {
/* link is present, ready link partner ability to deterine
duplexity */
int duplex = 0;
u16 reg;
sp->link = 1;
reg = mdiobus_read(&sp->mii_bus, sp->phy, MII_BMCR);
if (reg & BMCR_ANENABLE) {
/* auto neg enabled */
reg = mdiobus_read(&sp->mii_bus, sp->phy, MII_LPA);
duplex = (reg & (LPA_100FULL | LPA_10FULL)) ? 1 : 0;
} else {
/* no auto neg, just read duplex config */
duplex = (reg & BMCR_FULLDPLX) ? 1 : 0;
}
printk(KERN_INFO "%s: Configuring MAC for %s duplex\n",
dev->name, (duplex) ? "full" : "half");
if (duplex) {
/* full duplex */
sp->eth_regs->mac_control =
((sp->eth_regs->
mac_control | MAC_CONTROL_F) & ~MAC_CONTROL_DRO);
} else {
/* half duplex */
sp->eth_regs->mac_control =
((sp->eth_regs->
mac_control | MAC_CONTROL_DRO) & ~MAC_CONTROL_F);
}
} else {
/* no link */
sp->link = 0;
}
sp->phyData = phyData;
}
}
static int ar2313_reset_reg(struct net_device *dev)
{
struct ar2313_private *sp = netdev_priv(dev);
unsigned int ethsal, ethsah;
unsigned int flags;
*sp->int_regs |= sp->cfg->reset_mac;
mdelay(10);
*sp->int_regs &= ~sp->cfg->reset_mac;
mdelay(10);
*sp->int_regs |= sp->cfg->reset_phy;
mdelay(10);
*sp->int_regs &= ~sp->cfg->reset_phy;
mdelay(10);
sp->dma_regs->bus_mode = (DMA_BUS_MODE_SWR);
mdelay(10);
sp->dma_regs->bus_mode =
((32 << DMA_BUS_MODE_PBL_SHIFT) | DMA_BUS_MODE_BLE);
/* enable interrupts */
sp->dma_regs->intr_ena = (DMA_STATUS_AIS |
DMA_STATUS_NIS |
DMA_STATUS_RI |
DMA_STATUS_TI | DMA_STATUS_FBE);
sp->dma_regs->xmt_base = virt_to_phys(sp->tx_ring);
sp->dma_regs->rcv_base = virt_to_phys(sp->rx_ring);
sp->dma_regs->control =
(DMA_CONTROL_SR | DMA_CONTROL_ST | DMA_CONTROL_SF);
sp->eth_regs->flow_control = (FLOW_CONTROL_FCE);
sp->eth_regs->vlan_tag = (0x8100);
/* Enable Ethernet Interface */
flags = (MAC_CONTROL_TE | /* transmit enable */
MAC_CONTROL_PM | /* pass mcast */
MAC_CONTROL_F | /* full duplex */
MAC_CONTROL_HBD); /* heart beat disabled */
if (dev->flags & IFF_PROMISC) { /* set promiscuous mode */
flags |= MAC_CONTROL_PR;
}
sp->eth_regs->mac_control = flags;
/* Set all Ethernet station address registers to their initial values */
ethsah = ((((u_int) (dev->dev_addr[5]) << 8) & (u_int) 0x0000FF00) |
(((u_int) (dev->dev_addr[4]) << 0) & (u_int) 0x000000FF));
ethsal = ((((u_int) (dev->dev_addr[3]) << 24) & (u_int) 0xFF000000) |
(((u_int) (dev->dev_addr[2]) << 16) & (u_int) 0x00FF0000) |
(((u_int) (dev->dev_addr[1]) << 8) & (u_int) 0x0000FF00) |
(((u_int) (dev->dev_addr[0]) << 0) & (u_int) 0x000000FF));
sp->eth_regs->mac_addr[0] = ethsah;
sp->eth_regs->mac_addr[1] = ethsal;
mdelay(10);
return (0);
}
static int ar2313_init(struct net_device *dev)
{
struct ar2313_private *sp = netdev_priv(dev);
int ecode = 0;
/*
* Allocate descriptors
*/
if (ar2313_allocate_descriptors(dev)) {
printk("%s: %s: ar2313_allocate_descriptors failed\n",
dev->name, __FUNCTION__);
ecode = -EAGAIN;
goto init_error;
}
/*
* Get the memory for the skb rings.
*/
if (sp->rx_skb == NULL) {
sp->rx_skb =
kmalloc(sizeof(struct sk_buff *) * AR2313_DESCR_ENTRIES,
GFP_KERNEL);
if (!(sp->rx_skb)) {
printk("%s: %s: rx_skb kmalloc failed\n",
dev->name, __FUNCTION__);
ecode = -EAGAIN;
goto init_error;
}
}
memset(sp->rx_skb, 0, sizeof(struct sk_buff *) * AR2313_DESCR_ENTRIES);
if (sp->tx_skb == NULL) {
sp->tx_skb =
kmalloc(sizeof(struct sk_buff *) * AR2313_DESCR_ENTRIES,
GFP_KERNEL);
if (!(sp->tx_skb)) {
printk("%s: %s: tx_skb kmalloc failed\n",
dev->name, __FUNCTION__);
ecode = -EAGAIN;
goto init_error;
}
}
memset(sp->tx_skb, 0, sizeof(struct sk_buff *) * AR2313_DESCR_ENTRIES);
/*
* Set tx_csm before we start receiving interrupts, otherwise
* the interrupt handler might think it is supposed to process
* tx ints before we are up and running, which may cause a null
* pointer access in the int handler.
*/
sp->rx_skbprd = 0;
sp->cur_rx = 0;
sp->tx_prd = 0;
sp->tx_csm = 0;
/*
* Zero the stats before starting the interface
*/
memset(&dev->stats, 0, sizeof(dev->stats));
/*
* We load the ring here as there seem to be no way to tell the
* firmware to wipe the ring without re-initializing it.
*/
ar2313_load_rx_ring(dev, RX_RING_SIZE);
/*
* Init hardware
*/
ar2313_reset_reg(dev);
/*
* Get the IRQ
*/
ecode =
request_irq(dev->irq, &ar2313_interrupt,
IRQF_SHARED | IRQF_DISABLED | IRQF_SAMPLE_RANDOM,
dev->name, dev);
if (ecode) {
printk(KERN_WARNING "%s: %s: Requested IRQ %d is busy\n",
dev->name, __FUNCTION__, dev->irq);
goto init_error;
}
tasklet_enable(&sp->rx_tasklet);
return 0;
init_error:
ar2313_init_cleanup(dev);
return ecode;
}
/*
* Load the rx ring.
*
* Loading rings is safe without holding the spin lock since this is
* done only before the device is enabled, thus no interrupts are
* generated and by the interrupt handler/tasklet handler.
*/
static void ar2313_load_rx_ring(struct net_device *dev, int nr_bufs)
{
struct ar2313_private *sp = ((struct net_device *) dev)->priv;
short i, idx;
idx = sp->rx_skbprd;
for (i = 0; i < nr_bufs; i++) {
struct sk_buff *skb;
ar2313_descr_t *rd;
if (sp->rx_skb[idx]) {
#if DEBUG_RX
printk(KERN_INFO "ar2313 rx refill full\n");
#endif /* DEBUG */
break;
}
// partha: create additional room for the second GRE fragment
skb = alloc_skb(AR2313_BUFSIZE + 128, GFP_ATOMIC);
if (!skb) {
printk("\n\n\n\n %s: No memory in system\n\n\n\n",
__FUNCTION__);
break;
}
// partha: create additional room in the front for tx pkt capture
skb_reserve(skb, 32);
/*
* Make sure IP header starts on a fresh cache line.
*/
skb->dev = dev;
skb_reserve(skb, RX_OFFSET);
sp->rx_skb[idx] = skb;
rd = (ar2313_descr_t *) & sp->rx_ring[idx];
/* initialize dma descriptor */
rd->devcs = ((AR2313_BUFSIZE << DMA_RX1_BSIZE_SHIFT) |
DMA_RX1_CHAINED);
rd->addr = virt_to_phys(skb->data);
rd->descr =
virt_to_phys(&sp->
rx_ring[(idx + 1) & (AR2313_DESCR_ENTRIES - 1)]);
rd->status = DMA_RX_OWN;
idx = DSC_NEXT(idx);
}
if (!i) {
#if DEBUG_ERR
printk(KERN_INFO
"Out of memory when allocating standard receive buffers\n");
#endif /* DEBUG */
} else {
sp->rx_skbprd = idx;
}
return;
}
#define AR2313_MAX_PKTS_PER_CALL 64
static int ar2313_rx_int(struct net_device *dev)
{
struct ar2313_private *sp = netdev_priv(dev);
struct sk_buff *skb, *skb_new;
ar2313_descr_t *rxdesc;
unsigned int status;
u32 idx;
int pkts = 0;
int rval;
idx = sp->cur_rx;
/* process at most the entire ring and then wait for another interrupt
*/
while (1) {
rxdesc = &sp->rx_ring[idx];
status = rxdesc->status;
if (status & DMA_RX_OWN) {
/* SiByte owns descriptor or descr not yet filled in */
rval = 0;
break;
}
if (++pkts > AR2313_MAX_PKTS_PER_CALL) {
rval = 1;
break;
}
#if DEBUG_RX
printk("index %d\n", idx);
printk("RX status %08x\n", rxdesc->status);
printk("RX devcs %08x\n", rxdesc->devcs);
printk("RX addr %08x\n", rxdesc->addr);
printk("RX descr %08x\n", rxdesc->descr);
#endif
if ((status & (DMA_RX_ERROR | DMA_RX_ERR_LENGTH)) &&
(!(status & DMA_RX_LONG))) {
#if DEBUG_RX
printk("%s: rx ERROR %08x\n", __FUNCTION__, status);
#endif
dev->stats.rx_errors++;
dev->stats.rx_dropped++;
/* add statistics counters */
if (status & DMA_RX_ERR_CRC)
dev->stats.rx_crc_errors++;
if (status & DMA_RX_ERR_COL)
dev->stats.rx_over_errors++;
if (status & DMA_RX_ERR_LENGTH)
dev->stats.rx_length_errors++;
if (status & DMA_RX_ERR_RUNT)
dev->stats.rx_over_errors++;
if (status & DMA_RX_ERR_DESC)
dev->stats.rx_over_errors++;
} else {
/* alloc new buffer. */
skb_new = dev_alloc_skb(AR2313_BUFSIZE + RX_OFFSET + 128);
if (skb_new != NULL) {
skb = sp->rx_skb[idx];
/* set skb */
skb_put(skb,
((status >> DMA_RX_LEN_SHIFT) & 0x3fff) - CRC_LEN);
dev->stats.rx_bytes += skb->len;
skb->protocol = eth_type_trans(skb, dev);
/* pass the packet to upper layers */
netif_rx(skb);
skb_new->dev = dev;
/* 16 bit align */
skb_reserve(skb_new, RX_OFFSET + 32);
/* reset descriptor's curr_addr */
rxdesc->addr = virt_to_phys(skb_new->data);
dev->stats.rx_packets++;
sp->rx_skb[idx] = skb_new;
} else {
dev->stats.rx_dropped++;
}
}
rxdesc->devcs = ((AR2313_BUFSIZE << DMA_RX1_BSIZE_SHIFT) |
DMA_RX1_CHAINED);
rxdesc->status = DMA_RX_OWN;
idx = DSC_NEXT(idx);
}
sp->cur_rx = idx;
return rval;
}
static void ar2313_tx_int(struct net_device *dev)
{
struct ar2313_private *sp = netdev_priv(dev);
u32 idx;
struct sk_buff *skb;
ar2313_descr_t *txdesc;
unsigned int status = 0;
idx = sp->tx_csm;
while (idx != sp->tx_prd) {
txdesc = &sp->tx_ring[idx];
#if DEBUG_TX
printk
("%s: TXINT: csm=%d idx=%d prd=%d status=%x devcs=%x addr=%08x descr=%x\n",
dev->name, sp->tx_csm, idx, sp->tx_prd, txdesc->status,
txdesc->devcs, txdesc->addr, txdesc->descr);
#endif /* DEBUG */
if ((status = txdesc->status) & DMA_TX_OWN) {
/* ar2313 dma still owns descr */
break;
}
/* done with this descriptor */
dma_unmap_single(NULL, txdesc->addr,
txdesc->devcs & DMA_TX1_BSIZE_MASK,
DMA_TO_DEVICE);
txdesc->status = 0;
if (status & DMA_TX_ERROR) {
dev->stats.tx_errors++;
dev->stats.tx_dropped++;
if (status & DMA_TX_ERR_UNDER)
dev->stats.tx_fifo_errors++;
if (status & DMA_TX_ERR_HB)
dev->stats.tx_heartbeat_errors++;
if (status & (DMA_TX_ERR_LOSS | DMA_TX_ERR_LINK))
dev->stats.tx_carrier_errors++;
if (status & (DMA_TX_ERR_LATE |
DMA_TX_ERR_COL |
DMA_TX_ERR_JABBER | DMA_TX_ERR_DEFER))
dev->stats.tx_aborted_errors++;
} else {
/* transmit OK */
dev->stats.tx_packets++;
}
skb = sp->tx_skb[idx];
sp->tx_skb[idx] = NULL;
idx = DSC_NEXT(idx);
dev->stats.tx_bytes += skb->len;
dev_kfree_skb_irq(skb);
}
sp->tx_csm = idx;
return;
}
static void rx_tasklet_func(unsigned long data)
{
struct net_device *dev = (struct net_device *) data;
struct ar2313_private *sp = netdev_priv(dev);
if (sp->unloading) {
return;
}
if (ar2313_rx_int(dev)) {
tasklet_hi_schedule(&sp->rx_tasklet);
} else {
unsigned long flags;
spin_lock_irqsave(&sp->lock, flags);
sp->dma_regs->intr_ena |= DMA_STATUS_RI;
spin_unlock_irqrestore(&sp->lock, flags);
}
}
static void rx_schedule(struct net_device *dev)
{
struct ar2313_private *sp = netdev_priv(dev);
sp->dma_regs->intr_ena &= ~DMA_STATUS_RI;
tasklet_hi_schedule(&sp->rx_tasklet);
}
static irqreturn_t ar2313_interrupt(int irq, void *dev_id)
{
struct net_device *dev = (struct net_device *) dev_id;
struct ar2313_private *sp = netdev_priv(dev);
unsigned int status, enabled;
/* clear interrupt */
/*
* Don't clear RI bit if currently disabled.
*/
status = sp->dma_regs->status;
enabled = sp->dma_regs->intr_ena;
sp->dma_regs->status = status & enabled;
if (status & DMA_STATUS_NIS) {
/* normal status */
/*
* Don't schedule rx processing if interrupt
* is already disabled.
*/
if (status & enabled & DMA_STATUS_RI) {
/* receive interrupt */
rx_schedule(dev);
}
if (status & DMA_STATUS_TI) {
/* transmit interrupt */
ar2313_tx_int(dev);
}
}
if (status & DMA_STATUS_AIS) {
#if DEBUG_INT
printk("%s: AIS set %08x & %x\n", __FUNCTION__,
status, (DMA_STATUS_FBE | DMA_STATUS_TPS));
#endif
/* abnormal status */
if (status & (DMA_STATUS_FBE | DMA_STATUS_TPS)) {
ar2313_restart(dev);
}
}
return IRQ_HANDLED;
}
static int ar2313_open(struct net_device *dev)
{
struct ar2313_private *sp = netdev_priv(dev);
dev->mtu = 1500;
netif_start_queue(dev);
sp->eth_regs->mac_control |= MAC_CONTROL_RE;
return 0;
}
static void ar2313_halt(struct net_device *dev)
{
struct ar2313_private *sp = netdev_priv(dev);
int j;
tasklet_disable(&sp->rx_tasklet);
/* kill the MAC */
sp->eth_regs->mac_control &= ~(MAC_CONTROL_RE | /* disable Receives */
MAC_CONTROL_TE); /* disable Transmits */
/* stop dma */
sp->dma_regs->control = 0;
sp->dma_regs->bus_mode = DMA_BUS_MODE_SWR;
/* place phy and MAC in reset */
*sp->int_regs |= (sp->cfg->reset_mac | sp->cfg->reset_phy);
/* free buffers on tx ring */
for (j = 0; j < AR2313_DESCR_ENTRIES; j++) {
struct sk_buff *skb;
ar2313_descr_t *txdesc;
txdesc = &sp->tx_ring[j];
txdesc->descr = 0;
skb = sp->tx_skb[j];
if (skb) {
dev_kfree_skb(skb);
sp->tx_skb[j] = NULL;
}
}
}
/*
* close should do nothing. Here's why. It's called when
* 'ifconfig bond0 down' is run. If it calls free_irq then
* the irq is gone forever ! When bond0 is made 'up' again,
* the ar2313_open () does not call request_irq (). Worse,
* the call to ar2313_halt() generates a WDOG reset due to
* the write to 'sp->int_regs' and the box reboots.
* Commenting this out is good since it allows the
* system to resume when bond0 is made up again.
*/
static int ar2313_close(struct net_device *dev)
{
#if 0
/*
* Disable interrupts
*/
disable_irq(dev->irq);
/*
* Without (or before) releasing irq and stopping hardware, this
* is an absolute non-sense, by the way. It will be reset instantly
* by the first irq.
*/
netif_stop_queue(dev);
/* stop the MAC and DMA engines */
ar2313_halt(dev);
/* release the interrupt */
free_irq(dev->irq, dev);
#endif
return 0;
}
static int ar2313_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct ar2313_private *sp = netdev_priv(dev);
ar2313_descr_t *td;
u32 idx;
idx = sp->tx_prd;
td = &sp->tx_ring[idx];
if (td->status & DMA_TX_OWN) {
#if DEBUG_TX
printk("%s: No space left to Tx\n", __FUNCTION__);
#endif
/* free skbuf and lie to the caller that we sent it out */
dev->stats.tx_dropped++;
dev_kfree_skb(skb);
/* restart transmitter in case locked */
sp->dma_regs->xmt_poll = 0;
return 0;
}
/* Setup the transmit descriptor. */
td->devcs = ((skb->len << DMA_TX1_BSIZE_SHIFT) |
(DMA_TX1_LS | DMA_TX1_IC | DMA_TX1_CHAINED));
td->addr = dma_map_single(NULL, skb->data, skb->len, DMA_TO_DEVICE);
td->status = DMA_TX_OWN;
/* kick transmitter last */
sp->dma_regs->xmt_poll = 0;
#if DEBUG_TX
printk("index %d\n", idx);
printk("TX status %08x\n", td->status);
printk("TX devcs %08x\n", td->devcs);
printk("TX addr %08x\n", td->addr);
printk("TX descr %08x\n", td->descr);
#endif
sp->tx_skb[idx] = skb;
idx = DSC_NEXT(idx);
sp->tx_prd = idx;
return 0;
}
static int ar2313_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct mii_ioctl_data *data = (struct mii_ioctl_data *) &ifr->ifr_data;
struct ar2313_private *sp = netdev_priv(dev);
int ret;
switch (cmd) {
case SIOCETHTOOL:
spin_lock_irq(&sp->lock);
ret = phy_ethtool_ioctl(sp->phy_dev, (void *) ifr->ifr_data);
spin_unlock_irq(&sp->lock);
return ret;
case SIOCSIFHWADDR:
if (copy_from_user
(dev->dev_addr, ifr->ifr_data, sizeof(dev->dev_addr)))
return -EFAULT;
return 0;
case SIOCGIFHWADDR:
if (copy_to_user
(ifr->ifr_data, dev->dev_addr, sizeof(dev->dev_addr)))
return -EFAULT;
return 0;
case SIOCGMIIPHY:
case SIOCGMIIREG:
case SIOCSMIIREG:
return phy_mii_ioctl(sp->phy_dev, data, cmd);
default:
break;
}
return -EOPNOTSUPP;
}
static void ar2313_adjust_link(struct net_device *dev)
{
struct ar2313_private *sp = netdev_priv(dev);
unsigned int mc;
if (!sp->phy_dev->link)
return;
if (sp->phy_dev->duplex != sp->oldduplex) {
mc = readl(&sp->eth_regs->mac_control);
mc &= ~(MAC_CONTROL_F | MAC_CONTROL_DRO);
if (sp->phy_dev->duplex)
mc |= MAC_CONTROL_F;
else
mc |= MAC_CONTROL_DRO;
writel(mc, &sp->eth_regs->mac_control);
sp->oldduplex = sp->phy_dev->duplex;
}
}
#define MII_ADDR(phy, reg) \
((reg << MII_ADDR_REG_SHIFT) | (phy << MII_ADDR_PHY_SHIFT))
static int
mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
{
struct net_device *const dev = bus->priv;
struct ar2313_private *sp = netdev_priv(dev);
volatile ETHERNET_STRUCT *ethernet = sp->phy_regs;
ethernet->mii_addr = MII_ADDR(phy_addr, regnum);
while (ethernet->mii_addr & MII_ADDR_BUSY);
return (ethernet->mii_data >> MII_DATA_SHIFT);
}
static int
mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum,
u16 value)
{
struct net_device *const dev = bus->priv;
struct ar2313_private *sp = netdev_priv(dev);
volatile ETHERNET_STRUCT *ethernet = sp->phy_regs;
while (ethernet->mii_addr & MII_ADDR_BUSY);
ethernet->mii_data = value << MII_DATA_SHIFT;
ethernet->mii_addr = MII_ADDR(phy_addr, regnum) | MII_ADDR_WRITE;
return 0;
}
static int mdiobus_reset(struct mii_bus *bus)
{
struct net_device *const dev = bus->priv;
ar2313_reset_reg(dev);
return 0;
}
static int mdiobus_probe (struct net_device *dev)
{
struct ar2313_private *const sp = netdev_priv(dev);
struct phy_device *phydev = NULL;
int phy_addr;
/* find the first (lowest address) PHY on the current MAC's MII bus */
for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++)
if (sp->mii_bus.phy_map[phy_addr]) {
phydev = sp->mii_bus.phy_map[phy_addr];
break; /* break out with first one found */
}
if (!phydev) {
printk (KERN_ERR "ar2313:%s: no PHY found\n", dev->name);
return -1;
}
/* now we are supposed to have a proper phydev, to attach to... */
BUG_ON(!phydev);
BUG_ON(phydev->attached_dev);
phydev = phy_connect(dev, phydev->dev.bus_id, &ar2313_adjust_link, 0,
PHY_INTERFACE_MODE_MII);
if (IS_ERR(phydev)) {
printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
return PTR_ERR(phydev);
}
/* mask with MAC supported features */
phydev->supported &= (SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
| SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
| SUPPORTED_Autoneg
/* | SUPPORTED_Pause | SUPPORTED_Asym_Pause */
| SUPPORTED_MII
| SUPPORTED_TP);
phydev->advertising = phydev->supported;
sp->oldduplex = -1;
sp->phy_dev = phydev;
printk(KERN_INFO "%s: attached PHY driver [%s] "
"(mii_bus:phy_addr=%s)\n",
dev->name, phydev->drv->name, phydev->dev.bus_id);
return 0;
}