1
0
mirror of https://git.openwrt.org/openwrt/openwrt.git synced 2024-06-14 19:23:53 +02:00
openwrt/target/linux/ramips/files/drivers/net/ethernet/ralink/mtk_eth_soc.c
Ilya Lipnitskiy 10267e1729 ramips: 5.10: port and refresh patches, ralink drv
Enable testing kernel.

Fix compile errors by using new kernel APIs.

Fix fuzz by manually editing patches to ensure the code goes in the
right place.

For 721-NET-no-auto-carrier-off-support.patch, revert upstream commit
a307593a6 to keep the OpenWrt ralink driver operational.

Add mt7621-pci-phy patch to select REGMAP_MMIO as discussed in PR #3693
and #3952.

Run automatic quilt refresh on the rest.

Signed-off-by: Ilya Lipnitskiy <ilya.lipnitskiy@gmail.com>
2021-03-06 11:24:12 +01:00

1697 lines
40 KiB
C

/* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Copyright (C) 2009-2015 John Crispin <blogic@openwrt.org>
* Copyright (C) 2009-2015 Felix Fietkau <nbd@nbd.name>
* Copyright (C) 2013-2015 Michael Lee <igvtee@gmail.com>
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/dma-mapping.h>
#include <linux/init.h>
#include <linux/skbuff.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/platform_device.h>
#include <linux/of_device.h>
#include <linux/clk.h>
#include <linux/of_net.h>
#include <linux/of_mdio.h>
#include <linux/if_vlan.h>
#include <linux/reset.h>
#include <linux/tcp.h>
#include <linux/io.h>
#include <linux/bug.h>
#include <linux/netfilter.h>
#include <net/netfilter/nf_flow_table.h>
#include <linux/of_gpio.h>
#include <linux/gpio.h>
#include <linux/gpio/consumer.h>
#include <asm/mach-ralink/ralink_regs.h>
#include "mtk_eth_soc.h"
#include "mdio.h"
#include "ethtool.h"
#define MAX_RX_LENGTH 1536
#define FE_RX_ETH_HLEN (VLAN_ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN)
#define FE_RX_HLEN (NET_SKB_PAD + FE_RX_ETH_HLEN + NET_IP_ALIGN)
#define DMA_DUMMY_DESC 0xffffffff
#define FE_DEFAULT_MSG_ENABLE \
(NETIF_MSG_DRV | \
NETIF_MSG_PROBE | \
NETIF_MSG_LINK | \
NETIF_MSG_TIMER | \
NETIF_MSG_IFDOWN | \
NETIF_MSG_IFUP | \
NETIF_MSG_RX_ERR | \
NETIF_MSG_TX_ERR)
#define TX_DMA_DESP2_DEF (TX_DMA_LS0 | TX_DMA_DONE)
#define TX_DMA_DESP4_DEF (TX_DMA_QN(3) | TX_DMA_PN(1))
#define NEXT_TX_DESP_IDX(X) (((X) + 1) & (ring->tx_ring_size - 1))
#define NEXT_RX_DESP_IDX(X) (((X) + 1) & (ring->rx_ring_size - 1))
#define SYSC_REG_RSTCTRL 0x34
static int fe_msg_level = -1;
module_param_named(msg_level, fe_msg_level, int, 0);
MODULE_PARM_DESC(msg_level, "Message level (-1=defaults,0=none,...,16=all)");
static const u16 fe_reg_table_default[FE_REG_COUNT] = {
[FE_REG_PDMA_GLO_CFG] = FE_PDMA_GLO_CFG,
[FE_REG_PDMA_RST_CFG] = FE_PDMA_RST_CFG,
[FE_REG_DLY_INT_CFG] = FE_DLY_INT_CFG,
[FE_REG_TX_BASE_PTR0] = FE_TX_BASE_PTR0,
[FE_REG_TX_MAX_CNT0] = FE_TX_MAX_CNT0,
[FE_REG_TX_CTX_IDX0] = FE_TX_CTX_IDX0,
[FE_REG_TX_DTX_IDX0] = FE_TX_DTX_IDX0,
[FE_REG_RX_BASE_PTR0] = FE_RX_BASE_PTR0,
[FE_REG_RX_MAX_CNT0] = FE_RX_MAX_CNT0,
[FE_REG_RX_CALC_IDX0] = FE_RX_CALC_IDX0,
[FE_REG_RX_DRX_IDX0] = FE_RX_DRX_IDX0,
[FE_REG_FE_INT_ENABLE] = FE_FE_INT_ENABLE,
[FE_REG_FE_INT_STATUS] = FE_FE_INT_STATUS,
[FE_REG_FE_DMA_VID_BASE] = FE_DMA_VID0,
[FE_REG_FE_COUNTER_BASE] = FE_GDMA1_TX_GBCNT,
[FE_REG_FE_RST_GL] = FE_FE_RST_GL,
};
static const u16 *fe_reg_table = fe_reg_table_default;
struct fe_work_t {
int bitnr;
void (*action)(struct fe_priv *);
};
static void __iomem *fe_base;
void fe_w32(u32 val, unsigned reg)
{
__raw_writel(val, fe_base + reg);
}
u32 fe_r32(unsigned reg)
{
return __raw_readl(fe_base + reg);
}
void fe_reg_w32(u32 val, enum fe_reg reg)
{
fe_w32(val, fe_reg_table[reg]);
}
u32 fe_reg_r32(enum fe_reg reg)
{
return fe_r32(fe_reg_table[reg]);
}
void fe_m32(struct fe_priv *eth, u32 clear, u32 set, unsigned reg)
{
u32 val;
spin_lock(&eth->page_lock);
val = __raw_readl(fe_base + reg);
val &= ~clear;
val |= set;
__raw_writel(val, fe_base + reg);
spin_unlock(&eth->page_lock);
}
void fe_reset(u32 reset_bits)
{
u32 t;
t = rt_sysc_r32(SYSC_REG_RSTCTRL);
t |= reset_bits;
rt_sysc_w32(t, SYSC_REG_RSTCTRL);
usleep_range(10, 20);
t &= ~reset_bits;
rt_sysc_w32(t, SYSC_REG_RSTCTRL);
usleep_range(10, 20);
}
static inline void fe_int_disable(u32 mask)
{
fe_reg_w32(fe_reg_r32(FE_REG_FE_INT_ENABLE) & ~mask,
FE_REG_FE_INT_ENABLE);
/* flush write */
fe_reg_r32(FE_REG_FE_INT_ENABLE);
}
static inline void fe_int_enable(u32 mask)
{
fe_reg_w32(fe_reg_r32(FE_REG_FE_INT_ENABLE) | mask,
FE_REG_FE_INT_ENABLE);
/* flush write */
fe_reg_r32(FE_REG_FE_INT_ENABLE);
}
static inline void fe_hw_set_macaddr(struct fe_priv *priv, unsigned char *mac)
{
unsigned long flags;
spin_lock_irqsave(&priv->page_lock, flags);
fe_w32((mac[0] << 8) | mac[1], FE_GDMA1_MAC_ADRH);
fe_w32((mac[2] << 24) | (mac[3] << 16) | (mac[4] << 8) | mac[5],
FE_GDMA1_MAC_ADRL);
spin_unlock_irqrestore(&priv->page_lock, flags);
}
static int fe_set_mac_address(struct net_device *dev, void *p)
{
int ret = eth_mac_addr(dev, p);
if (!ret) {
struct fe_priv *priv = netdev_priv(dev);
if (priv->soc->set_mac)
priv->soc->set_mac(priv, dev->dev_addr);
else
fe_hw_set_macaddr(priv, p);
}
return ret;
}
static inline int fe_max_frag_size(int mtu)
{
/* make sure buf_size will be at least MAX_RX_LENGTH */
if (mtu + FE_RX_ETH_HLEN < MAX_RX_LENGTH)
mtu = MAX_RX_LENGTH - FE_RX_ETH_HLEN;
return SKB_DATA_ALIGN(FE_RX_HLEN + mtu) +
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
}
static inline int fe_max_buf_size(int frag_size)
{
int buf_size = frag_size - NET_SKB_PAD - NET_IP_ALIGN -
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
BUG_ON(buf_size < MAX_RX_LENGTH);
return buf_size;
}
static inline void fe_get_rxd(struct fe_rx_dma *rxd, struct fe_rx_dma *dma_rxd)
{
rxd->rxd1 = dma_rxd->rxd1;
rxd->rxd2 = dma_rxd->rxd2;
rxd->rxd3 = dma_rxd->rxd3;
rxd->rxd4 = dma_rxd->rxd4;
}
static inline void fe_set_txd(struct fe_tx_dma *txd, struct fe_tx_dma *dma_txd)
{
dma_txd->txd1 = txd->txd1;
dma_txd->txd3 = txd->txd3;
dma_txd->txd4 = txd->txd4;
/* clean dma done flag last */
dma_txd->txd2 = txd->txd2;
}
static void fe_clean_rx(struct fe_priv *priv)
{
struct fe_rx_ring *ring = &priv->rx_ring;
struct page *page;
int i;
if (ring->rx_data) {
for (i = 0; i < ring->rx_ring_size; i++)
if (ring->rx_data[i]) {
if (ring->rx_dma && ring->rx_dma[i].rxd1)
dma_unmap_single(priv->dev,
ring->rx_dma[i].rxd1,
ring->rx_buf_size,
DMA_FROM_DEVICE);
skb_free_frag(ring->rx_data[i]);
}
kfree(ring->rx_data);
ring->rx_data = NULL;
}
if (ring->rx_dma) {
dma_free_coherent(priv->dev,
ring->rx_ring_size * sizeof(*ring->rx_dma),
ring->rx_dma,
ring->rx_phys);
ring->rx_dma = NULL;
}
if (!ring->frag_cache.va)
return;
page = virt_to_page(ring->frag_cache.va);
__page_frag_cache_drain(page, ring->frag_cache.pagecnt_bias);
memset(&ring->frag_cache, 0, sizeof(ring->frag_cache));
}
static int fe_alloc_rx(struct fe_priv *priv)
{
struct fe_rx_ring *ring = &priv->rx_ring;
int i, pad;
ring->rx_data = kcalloc(ring->rx_ring_size, sizeof(*ring->rx_data),
GFP_KERNEL);
if (!ring->rx_data)
goto no_rx_mem;
for (i = 0; i < ring->rx_ring_size; i++) {
ring->rx_data[i] = page_frag_alloc(&ring->frag_cache,
ring->frag_size,
GFP_KERNEL);
if (!ring->rx_data[i])
goto no_rx_mem;
}
ring->rx_dma = dma_alloc_coherent(priv->dev,
ring->rx_ring_size * sizeof(*ring->rx_dma),
&ring->rx_phys,
GFP_ATOMIC | __GFP_ZERO);
if (!ring->rx_dma)
goto no_rx_mem;
if (priv->flags & FE_FLAG_RX_2B_OFFSET)
pad = 0;
else
pad = NET_IP_ALIGN;
for (i = 0; i < ring->rx_ring_size; i++) {
dma_addr_t dma_addr = dma_map_single(priv->dev,
ring->rx_data[i] + NET_SKB_PAD + pad,
ring->rx_buf_size,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(priv->dev, dma_addr)))
goto no_rx_mem;
ring->rx_dma[i].rxd1 = (unsigned int)dma_addr;
if (priv->flags & FE_FLAG_RX_SG_DMA)
ring->rx_dma[i].rxd2 = RX_DMA_PLEN0(ring->rx_buf_size);
else
ring->rx_dma[i].rxd2 = RX_DMA_LSO;
}
ring->rx_calc_idx = ring->rx_ring_size - 1;
/* make sure that all changes to the dma ring are flushed before we
* continue
*/
wmb();
fe_reg_w32(ring->rx_phys, FE_REG_RX_BASE_PTR0);
fe_reg_w32(ring->rx_ring_size, FE_REG_RX_MAX_CNT0);
fe_reg_w32(ring->rx_calc_idx, FE_REG_RX_CALC_IDX0);
fe_reg_w32(FE_PST_DRX_IDX0, FE_REG_PDMA_RST_CFG);
return 0;
no_rx_mem:
return -ENOMEM;
}
static void fe_txd_unmap(struct device *dev, struct fe_tx_buf *tx_buf)
{
if (dma_unmap_len(tx_buf, dma_len0))
dma_unmap_page(dev,
dma_unmap_addr(tx_buf, dma_addr0),
dma_unmap_len(tx_buf, dma_len0),
DMA_TO_DEVICE);
if (dma_unmap_len(tx_buf, dma_len1))
dma_unmap_page(dev,
dma_unmap_addr(tx_buf, dma_addr1),
dma_unmap_len(tx_buf, dma_len1),
DMA_TO_DEVICE);
dma_unmap_len_set(tx_buf, dma_addr0, 0);
dma_unmap_len_set(tx_buf, dma_addr1, 0);
if (tx_buf->skb && (tx_buf->skb != (struct sk_buff *)DMA_DUMMY_DESC))
dev_kfree_skb_any(tx_buf->skb);
tx_buf->skb = NULL;
}
static void fe_clean_tx(struct fe_priv *priv)
{
int i;
struct device *dev = priv->dev;
struct fe_tx_ring *ring = &priv->tx_ring;
if (ring->tx_buf) {
for (i = 0; i < ring->tx_ring_size; i++)
fe_txd_unmap(dev, &ring->tx_buf[i]);
kfree(ring->tx_buf);
ring->tx_buf = NULL;
}
if (ring->tx_dma) {
dma_free_coherent(dev,
ring->tx_ring_size * sizeof(*ring->tx_dma),
ring->tx_dma,
ring->tx_phys);
ring->tx_dma = NULL;
}
netdev_reset_queue(priv->netdev);
}
static int fe_alloc_tx(struct fe_priv *priv)
{
int i;
struct fe_tx_ring *ring = &priv->tx_ring;
ring->tx_free_idx = 0;
ring->tx_next_idx = 0;
ring->tx_thresh = max((unsigned long)ring->tx_ring_size >> 2,
MAX_SKB_FRAGS);
ring->tx_buf = kcalloc(ring->tx_ring_size, sizeof(*ring->tx_buf),
GFP_KERNEL);
if (!ring->tx_buf)
goto no_tx_mem;
ring->tx_dma = dma_alloc_coherent(priv->dev,
ring->tx_ring_size * sizeof(*ring->tx_dma),
&ring->tx_phys,
GFP_ATOMIC | __GFP_ZERO);
if (!ring->tx_dma)
goto no_tx_mem;
for (i = 0; i < ring->tx_ring_size; i++) {
if (priv->soc->tx_dma)
priv->soc->tx_dma(&ring->tx_dma[i]);
ring->tx_dma[i].txd2 = TX_DMA_DESP2_DEF;
}
/* make sure that all changes to the dma ring are flushed before we
* continue
*/
wmb();
fe_reg_w32(ring->tx_phys, FE_REG_TX_BASE_PTR0);
fe_reg_w32(ring->tx_ring_size, FE_REG_TX_MAX_CNT0);
fe_reg_w32(0, FE_REG_TX_CTX_IDX0);
fe_reg_w32(FE_PST_DTX_IDX0, FE_REG_PDMA_RST_CFG);
return 0;
no_tx_mem:
return -ENOMEM;
}
static int fe_init_dma(struct fe_priv *priv)
{
int err;
err = fe_alloc_tx(priv);
if (err)
return err;
err = fe_alloc_rx(priv);
if (err)
return err;
return 0;
}
static void fe_free_dma(struct fe_priv *priv)
{
fe_clean_tx(priv);
fe_clean_rx(priv);
}
void fe_stats_update(struct fe_priv *priv)
{
struct fe_hw_stats *hwstats = priv->hw_stats;
unsigned int base = fe_reg_table[FE_REG_FE_COUNTER_BASE];
u64 stats;
u64_stats_update_begin(&hwstats->syncp);
if (IS_ENABLED(CONFIG_SOC_MT7621)) {
hwstats->rx_bytes += fe_r32(base);
stats = fe_r32(base + 0x04);
if (stats)
hwstats->rx_bytes += (stats << 32);
hwstats->rx_packets += fe_r32(base + 0x08);
hwstats->rx_overflow += fe_r32(base + 0x10);
hwstats->rx_fcs_errors += fe_r32(base + 0x14);
hwstats->rx_short_errors += fe_r32(base + 0x18);
hwstats->rx_long_errors += fe_r32(base + 0x1c);
hwstats->rx_checksum_errors += fe_r32(base + 0x20);
hwstats->rx_flow_control_packets += fe_r32(base + 0x24);
hwstats->tx_skip += fe_r32(base + 0x28);
hwstats->tx_collisions += fe_r32(base + 0x2c);
hwstats->tx_bytes += fe_r32(base + 0x30);
stats = fe_r32(base + 0x34);
if (stats)
hwstats->tx_bytes += (stats << 32);
hwstats->tx_packets += fe_r32(base + 0x38);
} else {
hwstats->tx_bytes += fe_r32(base);
hwstats->tx_packets += fe_r32(base + 0x04);
hwstats->tx_skip += fe_r32(base + 0x08);
hwstats->tx_collisions += fe_r32(base + 0x0c);
hwstats->rx_bytes += fe_r32(base + 0x20);
hwstats->rx_packets += fe_r32(base + 0x24);
hwstats->rx_overflow += fe_r32(base + 0x28);
hwstats->rx_fcs_errors += fe_r32(base + 0x2c);
hwstats->rx_short_errors += fe_r32(base + 0x30);
hwstats->rx_long_errors += fe_r32(base + 0x34);
hwstats->rx_checksum_errors += fe_r32(base + 0x38);
hwstats->rx_flow_control_packets += fe_r32(base + 0x3c);
}
u64_stats_update_end(&hwstats->syncp);
}
static void fe_get_stats64(struct net_device *dev,
struct rtnl_link_stats64 *storage)
{
struct fe_priv *priv = netdev_priv(dev);
struct fe_hw_stats *hwstats = priv->hw_stats;
unsigned int base = fe_reg_table[FE_REG_FE_COUNTER_BASE];
unsigned int start;
if (!base) {
netdev_stats_to_stats64(storage, &dev->stats);
return;
}
if (netif_running(dev) && netif_device_present(dev)) {
if (spin_trylock_bh(&hwstats->stats_lock)) {
fe_stats_update(priv);
spin_unlock_bh(&hwstats->stats_lock);
}
}
do {
start = u64_stats_fetch_begin_irq(&hwstats->syncp);
storage->rx_packets = hwstats->rx_packets;
storage->tx_packets = hwstats->tx_packets;
storage->rx_bytes = hwstats->rx_bytes;
storage->tx_bytes = hwstats->tx_bytes;
storage->collisions = hwstats->tx_collisions;
storage->rx_length_errors = hwstats->rx_short_errors +
hwstats->rx_long_errors;
storage->rx_over_errors = hwstats->rx_overflow;
storage->rx_crc_errors = hwstats->rx_fcs_errors;
storage->rx_errors = hwstats->rx_checksum_errors;
storage->tx_aborted_errors = hwstats->tx_skip;
} while (u64_stats_fetch_retry_irq(&hwstats->syncp, start));
storage->tx_errors = priv->netdev->stats.tx_errors;
storage->rx_dropped = priv->netdev->stats.rx_dropped;
storage->tx_dropped = priv->netdev->stats.tx_dropped;
}
static int fe_vlan_rx_add_vid(struct net_device *dev,
__be16 proto, u16 vid)
{
struct fe_priv *priv = netdev_priv(dev);
u32 idx = (vid & 0xf);
u32 vlan_cfg;
if (!((fe_reg_table[FE_REG_FE_DMA_VID_BASE]) &&
(dev->features & NETIF_F_HW_VLAN_CTAG_TX)))
return 0;
if (test_bit(idx, &priv->vlan_map)) {
netdev_warn(dev, "disable tx vlan offload\n");
dev->wanted_features &= ~NETIF_F_HW_VLAN_CTAG_TX;
netdev_update_features(dev);
} else {
vlan_cfg = fe_r32(fe_reg_table[FE_REG_FE_DMA_VID_BASE] +
((idx >> 1) << 2));
if (idx & 0x1) {
vlan_cfg &= 0xffff;
vlan_cfg |= (vid << 16);
} else {
vlan_cfg &= 0xffff0000;
vlan_cfg |= vid;
}
fe_w32(vlan_cfg, fe_reg_table[FE_REG_FE_DMA_VID_BASE] +
((idx >> 1) << 2));
set_bit(idx, &priv->vlan_map);
}
return 0;
}
static int fe_vlan_rx_kill_vid(struct net_device *dev,
__be16 proto, u16 vid)
{
struct fe_priv *priv = netdev_priv(dev);
u32 idx = (vid & 0xf);
if (!((fe_reg_table[FE_REG_FE_DMA_VID_BASE]) &&
(dev->features & NETIF_F_HW_VLAN_CTAG_TX)))
return 0;
clear_bit(idx, &priv->vlan_map);
return 0;
}
static inline u32 fe_empty_txd(struct fe_tx_ring *ring)
{
barrier();
return (u32)(ring->tx_ring_size -
((ring->tx_next_idx - ring->tx_free_idx) &
(ring->tx_ring_size - 1)));
}
struct fe_map_state {
struct device *dev;
struct fe_tx_dma txd;
u32 def_txd4;
int ring_idx;
int i;
};
static void fe_tx_dma_write_desc(struct fe_tx_ring *ring, struct fe_map_state *st)
{
fe_set_txd(&st->txd, &ring->tx_dma[st->ring_idx]);
memset(&st->txd, 0, sizeof(st->txd));
st->txd.txd4 = st->def_txd4;
st->ring_idx = NEXT_TX_DESP_IDX(st->ring_idx);
}
static int __fe_tx_dma_map_page(struct fe_tx_ring *ring, struct fe_map_state *st,
struct page *page, size_t offset, size_t size)
{
struct device *dev = st->dev;
struct fe_tx_buf *tx_buf;
dma_addr_t mapped_addr;
mapped_addr = dma_map_page(dev, page, offset, size, DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(dev, mapped_addr)))
return -EIO;
if (st->i && !(st->i & 1))
fe_tx_dma_write_desc(ring, st);
tx_buf = &ring->tx_buf[st->ring_idx];
if (st->i & 1) {
st->txd.txd3 = mapped_addr;
st->txd.txd2 |= TX_DMA_PLEN1(size);
dma_unmap_addr_set(tx_buf, dma_addr1, mapped_addr);
dma_unmap_len_set(tx_buf, dma_len1, size);
} else {
tx_buf->skb = (struct sk_buff *)DMA_DUMMY_DESC;
st->txd.txd1 = mapped_addr;
st->txd.txd2 = TX_DMA_PLEN0(size);
dma_unmap_addr_set(tx_buf, dma_addr0, mapped_addr);
dma_unmap_len_set(tx_buf, dma_len0, size);
}
st->i++;
return 0;
}
static int fe_tx_dma_map_page(struct fe_tx_ring *ring, struct fe_map_state *st,
struct page *page, size_t offset, size_t size)
{
int cur_size;
int ret;
while (size > 0) {
cur_size = min_t(size_t, size, TX_DMA_BUF_LEN);
ret = __fe_tx_dma_map_page(ring, st, page, offset, cur_size);
if (ret)
return ret;
size -= cur_size;
offset += cur_size;
}
return 0;
}
static int fe_tx_dma_map_skb(struct fe_tx_ring *ring, struct fe_map_state *st,
struct sk_buff *skb)
{
struct page *page = virt_to_page(skb->data);
size_t offset = offset_in_page(skb->data);
size_t size = skb_headlen(skb);
return fe_tx_dma_map_page(ring, st, page, offset, size);
}
static inline struct sk_buff *
fe_next_frag(struct sk_buff *head, struct sk_buff *skb)
{
if (skb != head)
return skb->next;
if (skb_has_frag_list(skb))
return skb_shinfo(skb)->frag_list;
return NULL;
}
static int fe_tx_map_dma(struct sk_buff *skb, struct net_device *dev,
int tx_num, struct fe_tx_ring *ring)
{
struct fe_priv *priv = netdev_priv(dev);
struct fe_map_state st = {
.dev = priv->dev,
.ring_idx = ring->tx_next_idx,
};
struct sk_buff *head = skb;
struct fe_tx_buf *tx_buf;
unsigned int nr_frags;
int i, j;
/* init tx descriptor */
if (priv->soc->tx_dma)
priv->soc->tx_dma(&st.txd);
else
st.txd.txd4 = TX_DMA_DESP4_DEF;
st.def_txd4 = st.txd.txd4;
/* TX Checksum offload */
if (skb->ip_summed == CHECKSUM_PARTIAL)
st.txd.txd4 |= TX_DMA_CHKSUM;
/* VLAN header offload */
if (skb_vlan_tag_present(skb)) {
u16 tag = skb_vlan_tag_get(skb);
if (IS_ENABLED(CONFIG_SOC_MT7621))
st.txd.txd4 |= TX_DMA_INS_VLAN_MT7621 | tag;
else
st.txd.txd4 |= TX_DMA_INS_VLAN |
((tag >> VLAN_PRIO_SHIFT) << 4) |
(tag & 0xF);
}
/* TSO: fill MSS info in tcp checksum field */
if (skb_is_gso(skb)) {
if (skb_cow_head(skb, 0)) {
netif_warn(priv, tx_err, dev,
"GSO expand head fail.\n");
goto err_out;
}
if (skb_shinfo(skb)->gso_type &
(SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
st.txd.txd4 |= TX_DMA_TSO;
tcp_hdr(skb)->check = htons(skb_shinfo(skb)->gso_size);
}
}
next_frag:
if (skb_headlen(skb) && fe_tx_dma_map_skb(ring, &st, skb))
goto err_dma;
/* TX SG offload */
nr_frags = skb_shinfo(skb)->nr_frags;
for (i = 0; i < nr_frags; i++) {
skb_frag_t *frag;
frag = &skb_shinfo(skb)->frags[i];
if (fe_tx_dma_map_page(ring, &st, skb_frag_page(frag),
skb_frag_off(frag), skb_frag_size(frag)))
goto err_dma;
}
skb = fe_next_frag(head, skb);
if (skb)
goto next_frag;
/* set last segment */
if (st.i & 0x1)
st.txd.txd2 |= TX_DMA_LS0;
else
st.txd.txd2 |= TX_DMA_LS1;
/* store skb to cleanup */
tx_buf = &ring->tx_buf[st.ring_idx];
tx_buf->skb = head;
netdev_sent_queue(dev, head->len);
skb_tx_timestamp(head);
fe_tx_dma_write_desc(ring, &st);
ring->tx_next_idx = st.ring_idx;
/* make sure that all changes to the dma ring are flushed before we
* continue
*/
wmb();
if (unlikely(fe_empty_txd(ring) <= ring->tx_thresh)) {
netif_stop_queue(dev);
smp_mb();
if (unlikely(fe_empty_txd(ring) > ring->tx_thresh))
netif_wake_queue(dev);
}
if (netif_xmit_stopped(netdev_get_tx_queue(dev, 0)) || !netdev_xmit_more())
fe_reg_w32(ring->tx_next_idx, FE_REG_TX_CTX_IDX0);
return 0;
err_dma:
j = ring->tx_next_idx;
for (i = 0; i < tx_num; i++) {
/* unmap dma */
fe_txd_unmap(priv->dev, &ring->tx_buf[j]);
ring->tx_dma[j].txd2 = TX_DMA_DESP2_DEF;
j = NEXT_TX_DESP_IDX(j);
}
/* make sure that all changes to the dma ring are flushed before we
* continue
*/
wmb();
err_out:
return -1;
}
static inline int fe_skb_padto(struct sk_buff *skb, struct fe_priv *priv)
{
unsigned int len;
int ret;
ret = 0;
if (unlikely(skb->len < VLAN_ETH_ZLEN)) {
if ((priv->flags & FE_FLAG_PADDING_64B) &&
!(priv->flags & FE_FLAG_PADDING_BUG))
return ret;
if (skb_vlan_tag_present(skb))
len = ETH_ZLEN;
else if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
len = VLAN_ETH_ZLEN;
else if (!(priv->flags & FE_FLAG_PADDING_64B))
len = ETH_ZLEN;
else
return ret;
if (skb->len < len) {
ret = skb_pad(skb, len - skb->len);
if (ret < 0)
return ret;
skb->len = len;
skb_set_tail_pointer(skb, len);
}
}
return ret;
}
static inline int fe_cal_txd_req(struct sk_buff *skb)
{
struct sk_buff *head = skb;
int i, nfrags = 0;
skb_frag_t *frag;
next_frag:
nfrags++;
if (skb_is_gso(skb)) {
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
frag = &skb_shinfo(skb)->frags[i];
nfrags += DIV_ROUND_UP(skb_frag_size(frag), TX_DMA_BUF_LEN);
}
} else {
nfrags += skb_shinfo(skb)->nr_frags;
}
skb = fe_next_frag(head, skb);
if (skb)
goto next_frag;
return DIV_ROUND_UP(nfrags, 2);
}
static int fe_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct fe_priv *priv = netdev_priv(dev);
struct fe_tx_ring *ring = &priv->tx_ring;
struct net_device_stats *stats = &dev->stats;
int tx_num;
int len = skb->len;
if (fe_skb_padto(skb, priv)) {
netif_warn(priv, tx_err, dev, "tx padding failed!\n");
return NETDEV_TX_OK;
}
tx_num = fe_cal_txd_req(skb);
if (unlikely(fe_empty_txd(ring) <= tx_num)) {
netif_stop_queue(dev);
netif_err(priv, tx_queued, dev,
"Tx Ring full when queue awake!\n");
return NETDEV_TX_BUSY;
}
if (fe_tx_map_dma(skb, dev, tx_num, ring) < 0) {
stats->tx_dropped++;
} else {
stats->tx_packets++;
stats->tx_bytes += len;
}
return NETDEV_TX_OK;
}
static int fe_poll_rx(struct napi_struct *napi, int budget,
struct fe_priv *priv, u32 rx_intr)
{
struct net_device *netdev = priv->netdev;
struct net_device_stats *stats = &netdev->stats;
struct fe_soc_data *soc = priv->soc;
struct fe_rx_ring *ring = &priv->rx_ring;
int idx = ring->rx_calc_idx;
u32 checksum_bit;
struct sk_buff *skb;
u8 *data, *new_data;
struct fe_rx_dma *rxd, trxd;
int done = 0, pad;
if (netdev->features & NETIF_F_RXCSUM)
checksum_bit = soc->checksum_bit;
else
checksum_bit = 0;
if (priv->flags & FE_FLAG_RX_2B_OFFSET)
pad = 0;
else
pad = NET_IP_ALIGN;
while (done < budget) {
unsigned int pktlen;
dma_addr_t dma_addr;
idx = NEXT_RX_DESP_IDX(idx);
rxd = &ring->rx_dma[idx];
data = ring->rx_data[idx];
fe_get_rxd(&trxd, rxd);
if (!(trxd.rxd2 & RX_DMA_DONE))
break;
/* alloc new buffer */
new_data = page_frag_alloc(&ring->frag_cache, ring->frag_size,
GFP_ATOMIC);
if (unlikely(!new_data)) {
stats->rx_dropped++;
goto release_desc;
}
dma_addr = dma_map_single(priv->dev,
new_data + NET_SKB_PAD + pad,
ring->rx_buf_size,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(priv->dev, dma_addr))) {
skb_free_frag(new_data);
goto release_desc;
}
/* receive data */
skb = build_skb(data, ring->frag_size);
if (unlikely(!skb)) {
skb_free_frag(new_data);
goto release_desc;
}
skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
dma_unmap_single(priv->dev, trxd.rxd1,
ring->rx_buf_size, DMA_FROM_DEVICE);
pktlen = RX_DMA_GET_PLEN0(trxd.rxd2);
skb->dev = netdev;
skb_put(skb, pktlen);
if (trxd.rxd4 & checksum_bit)
skb->ip_summed = CHECKSUM_UNNECESSARY;
else
skb_checksum_none_assert(skb);
skb->protocol = eth_type_trans(skb, netdev);
if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX &&
RX_DMA_VID(trxd.rxd3))
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
RX_DMA_VID(trxd.rxd3));
stats->rx_packets++;
stats->rx_bytes += pktlen;
napi_gro_receive(napi, skb);
ring->rx_data[idx] = new_data;
rxd->rxd1 = (unsigned int)dma_addr;
release_desc:
if (priv->flags & FE_FLAG_RX_SG_DMA)
rxd->rxd2 = RX_DMA_PLEN0(ring->rx_buf_size);
else
rxd->rxd2 = RX_DMA_LSO;
ring->rx_calc_idx = idx;
/* make sure that all changes to the dma ring are flushed before
* we continue
*/
wmb();
fe_reg_w32(ring->rx_calc_idx, FE_REG_RX_CALC_IDX0);
done++;
}
if (done < budget)
fe_reg_w32(rx_intr, FE_REG_FE_INT_STATUS);
return done;
}
static int fe_poll_tx(struct fe_priv *priv, int budget, u32 tx_intr,
int *tx_again)
{
struct net_device *netdev = priv->netdev;
unsigned int bytes_compl = 0;
struct sk_buff *skb;
struct fe_tx_buf *tx_buf;
int done = 0;
u32 idx, hwidx;
struct fe_tx_ring *ring = &priv->tx_ring;
idx = ring->tx_free_idx;
hwidx = fe_reg_r32(FE_REG_TX_DTX_IDX0);
while ((idx != hwidx) && budget) {
tx_buf = &ring->tx_buf[idx];
skb = tx_buf->skb;
if (!skb)
break;
if (skb != (struct sk_buff *)DMA_DUMMY_DESC) {
bytes_compl += skb->len;
done++;
budget--;
}
fe_txd_unmap(priv->dev, tx_buf);
idx = NEXT_TX_DESP_IDX(idx);
}
ring->tx_free_idx = idx;
if (idx == hwidx) {
/* read hw index again make sure no new tx packet */
hwidx = fe_reg_r32(FE_REG_TX_DTX_IDX0);
if (idx == hwidx)
fe_reg_w32(tx_intr, FE_REG_FE_INT_STATUS);
else
*tx_again = 1;
} else {
*tx_again = 1;
}
if (done) {
netdev_completed_queue(netdev, done, bytes_compl);
smp_mb();
if (unlikely(netif_queue_stopped(netdev) &&
(fe_empty_txd(ring) > ring->tx_thresh)))
netif_wake_queue(netdev);
}
return done;
}
static int fe_poll(struct napi_struct *napi, int budget)
{
struct fe_priv *priv = container_of(napi, struct fe_priv, rx_napi);
struct fe_hw_stats *hwstat = priv->hw_stats;
int tx_done, rx_done, tx_again;
u32 status, fe_status, status_reg, mask;
u32 tx_intr, rx_intr, status_intr;
status = fe_reg_r32(FE_REG_FE_INT_STATUS);
fe_status = status;
tx_intr = priv->soc->tx_int;
rx_intr = priv->soc->rx_int;
status_intr = priv->soc->status_int;
tx_done = 0;
rx_done = 0;
tx_again = 0;
if (fe_reg_table[FE_REG_FE_INT_STATUS2]) {
fe_status = fe_reg_r32(FE_REG_FE_INT_STATUS2);
status_reg = FE_REG_FE_INT_STATUS2;
} else {
status_reg = FE_REG_FE_INT_STATUS;
}
if (status & tx_intr)
tx_done = fe_poll_tx(priv, budget, tx_intr, &tx_again);
if (status & rx_intr)
rx_done = fe_poll_rx(napi, budget, priv, rx_intr);
if (unlikely(fe_status & status_intr)) {
if (hwstat && spin_trylock(&hwstat->stats_lock)) {
fe_stats_update(priv);
spin_unlock(&hwstat->stats_lock);
}
fe_reg_w32(status_intr, status_reg);
}
if (unlikely(netif_msg_intr(priv))) {
mask = fe_reg_r32(FE_REG_FE_INT_ENABLE);
netdev_info(priv->netdev,
"done tx %d, rx %d, intr 0x%08x/0x%x\n",
tx_done, rx_done, status, mask);
}
if (!tx_again && (rx_done < budget)) {
status = fe_reg_r32(FE_REG_FE_INT_STATUS);
if (status & (tx_intr | rx_intr)) {
/* let napi poll again */
rx_done = budget;
goto poll_again;
}
napi_complete_done(napi, rx_done);
fe_int_enable(tx_intr | rx_intr);
} else {
rx_done = budget;
}
poll_again:
return rx_done;
}
#if LINUX_VERSION_CODE < KERNEL_VERSION(5, 10, 0)
static void fe_tx_timeout(struct net_device *dev)
#else
static void fe_tx_timeout(struct net_device *dev, unsigned int txqueue)
#endif
{
struct fe_priv *priv = netdev_priv(dev);
struct fe_tx_ring *ring = &priv->tx_ring;
priv->netdev->stats.tx_errors++;
netif_err(priv, tx_err, dev,
"transmit timed out\n");
netif_info(priv, drv, dev, "dma_cfg:%08x\n",
fe_reg_r32(FE_REG_PDMA_GLO_CFG));
netif_info(priv, drv, dev, "tx_ring=%d, "
"base=%08x, max=%u, ctx=%u, dtx=%u, fdx=%hu, next=%hu\n",
0, fe_reg_r32(FE_REG_TX_BASE_PTR0),
fe_reg_r32(FE_REG_TX_MAX_CNT0),
fe_reg_r32(FE_REG_TX_CTX_IDX0),
fe_reg_r32(FE_REG_TX_DTX_IDX0),
ring->tx_free_idx,
ring->tx_next_idx);
netif_info(priv, drv, dev,
"rx_ring=%d, base=%08x, max=%u, calc=%u, drx=%u\n",
0, fe_reg_r32(FE_REG_RX_BASE_PTR0),
fe_reg_r32(FE_REG_RX_MAX_CNT0),
fe_reg_r32(FE_REG_RX_CALC_IDX0),
fe_reg_r32(FE_REG_RX_DRX_IDX0));
if (!test_and_set_bit(FE_FLAG_RESET_PENDING, priv->pending_flags))
schedule_work(&priv->pending_work);
}
static irqreturn_t fe_handle_irq(int irq, void *dev)
{
struct fe_priv *priv = netdev_priv(dev);
u32 status, int_mask;
status = fe_reg_r32(FE_REG_FE_INT_STATUS);
if (unlikely(!status))
return IRQ_NONE;
int_mask = (priv->soc->rx_int | priv->soc->tx_int);
if (likely(status & int_mask)) {
if (likely(napi_schedule_prep(&priv->rx_napi))) {
fe_int_disable(int_mask);
__napi_schedule(&priv->rx_napi);
}
} else {
fe_reg_w32(status, FE_REG_FE_INT_STATUS);
}
return IRQ_HANDLED;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void fe_poll_controller(struct net_device *dev)
{
struct fe_priv *priv = netdev_priv(dev);
u32 int_mask = priv->soc->tx_int | priv->soc->rx_int;
fe_int_disable(int_mask);
fe_handle_irq(dev->irq, dev);
fe_int_enable(int_mask);
}
#endif
int fe_set_clock_cycle(struct fe_priv *priv)
{
unsigned long sysclk = priv->sysclk;
sysclk /= FE_US_CYC_CNT_DIVISOR;
sysclk <<= FE_US_CYC_CNT_SHIFT;
fe_w32((fe_r32(FE_FE_GLO_CFG) &
~(FE_US_CYC_CNT_MASK << FE_US_CYC_CNT_SHIFT)) |
sysclk,
FE_FE_GLO_CFG);
return 0;
}
void fe_fwd_config(struct fe_priv *priv)
{
u32 fwd_cfg;
fwd_cfg = fe_r32(FE_GDMA1_FWD_CFG);
/* disable jumbo frame */
if (priv->flags & FE_FLAG_JUMBO_FRAME)
fwd_cfg &= ~FE_GDM1_JMB_EN;
/* set unicast/multicast/broadcast frame to cpu */
fwd_cfg &= ~0xffff;
fe_w32(fwd_cfg, FE_GDMA1_FWD_CFG);
}
static void fe_rxcsum_config(bool enable)
{
if (enable)
fe_w32(fe_r32(FE_GDMA1_FWD_CFG) | (FE_GDM1_ICS_EN |
FE_GDM1_TCS_EN | FE_GDM1_UCS_EN),
FE_GDMA1_FWD_CFG);
else
fe_w32(fe_r32(FE_GDMA1_FWD_CFG) & ~(FE_GDM1_ICS_EN |
FE_GDM1_TCS_EN | FE_GDM1_UCS_EN),
FE_GDMA1_FWD_CFG);
}
static void fe_txcsum_config(bool enable)
{
if (enable)
fe_w32(fe_r32(FE_CDMA_CSG_CFG) | (FE_ICS_GEN_EN |
FE_TCS_GEN_EN | FE_UCS_GEN_EN),
FE_CDMA_CSG_CFG);
else
fe_w32(fe_r32(FE_CDMA_CSG_CFG) & ~(FE_ICS_GEN_EN |
FE_TCS_GEN_EN | FE_UCS_GEN_EN),
FE_CDMA_CSG_CFG);
}
void fe_csum_config(struct fe_priv *priv)
{
struct net_device *dev = priv_netdev(priv);
fe_txcsum_config((dev->features & NETIF_F_IP_CSUM));
fe_rxcsum_config((dev->features & NETIF_F_RXCSUM));
}
static int fe_hw_init(struct net_device *dev)
{
struct fe_priv *priv = netdev_priv(dev);
int i, err;
err = devm_request_irq(priv->dev, dev->irq, fe_handle_irq, 0,
dev_name(priv->dev), dev);
if (err)
return err;
if (priv->soc->set_mac)
priv->soc->set_mac(priv, dev->dev_addr);
else
fe_hw_set_macaddr(priv, dev->dev_addr);
/* disable delay interrupt */
fe_reg_w32(0, FE_REG_DLY_INT_CFG);
fe_int_disable(priv->soc->tx_int | priv->soc->rx_int);
/* frame engine will push VLAN tag regarding to VIDX feild in Tx desc */
if (fe_reg_table[FE_REG_FE_DMA_VID_BASE])
for (i = 0; i < 16; i += 2)
fe_w32(((i + 1) << 16) + i,
fe_reg_table[FE_REG_FE_DMA_VID_BASE] +
(i * 2));
if (priv->soc->fwd_config(priv))
netdev_err(dev, "unable to get clock\n");
if (fe_reg_table[FE_REG_FE_RST_GL]) {
fe_reg_w32(1, FE_REG_FE_RST_GL);
fe_reg_w32(0, FE_REG_FE_RST_GL);
}
return 0;
}
static int fe_open(struct net_device *dev)
{
struct fe_priv *priv = netdev_priv(dev);
unsigned long flags;
u32 val;
int err;
err = fe_init_dma(priv);
if (err) {
fe_free_dma(priv);
return err;
}
spin_lock_irqsave(&priv->page_lock, flags);
val = FE_TX_WB_DDONE | FE_RX_DMA_EN | FE_TX_DMA_EN;
if (priv->flags & FE_FLAG_RX_2B_OFFSET)
val |= FE_RX_2B_OFFSET;
val |= priv->soc->pdma_glo_cfg;
fe_reg_w32(val, FE_REG_PDMA_GLO_CFG);
spin_unlock_irqrestore(&priv->page_lock, flags);
if (priv->phy)
priv->phy->start(priv);
if (priv->soc->has_carrier && priv->soc->has_carrier(priv))
netif_carrier_on(dev);
napi_enable(&priv->rx_napi);
fe_int_enable(priv->soc->tx_int | priv->soc->rx_int);
netif_start_queue(dev);
return 0;
}
static int fe_stop(struct net_device *dev)
{
struct fe_priv *priv = netdev_priv(dev);
unsigned long flags;
int i;
netif_tx_disable(dev);
fe_int_disable(priv->soc->tx_int | priv->soc->rx_int);
napi_disable(&priv->rx_napi);
if (priv->phy)
priv->phy->stop(priv);
spin_lock_irqsave(&priv->page_lock, flags);
fe_reg_w32(fe_reg_r32(FE_REG_PDMA_GLO_CFG) &
~(FE_TX_WB_DDONE | FE_RX_DMA_EN | FE_TX_DMA_EN),
FE_REG_PDMA_GLO_CFG);
spin_unlock_irqrestore(&priv->page_lock, flags);
/* wait dma stop */
for (i = 0; i < 10; i++) {
if (fe_reg_r32(FE_REG_PDMA_GLO_CFG) &
(FE_TX_DMA_BUSY | FE_RX_DMA_BUSY)) {
msleep(20);
continue;
}
break;
}
fe_free_dma(priv);
return 0;
}
static void fe_reset_phy(struct fe_priv *priv)
{
int err, msec = 30;
struct gpio_desc *phy_reset;
phy_reset = devm_gpiod_get_optional(priv->dev, "phy-reset",
GPIOD_OUT_HIGH);
if (!phy_reset)
return;
if (IS_ERR(phy_reset)) {
dev_err(priv->dev, "Error acquiring reset gpio pins: %ld\n",
PTR_ERR(phy_reset));
return;
}
err = of_property_read_u32(priv->dev->of_node, "phy-reset-duration",
&msec);
if (!err && msec > 1000)
msec = 30;
if (msec > 20)
msleep(msec);
else
usleep_range(msec * 1000, msec * 1000 + 1000);
gpiod_set_value(phy_reset, 0);
}
static int __init fe_init(struct net_device *dev)
{
struct fe_priv *priv = netdev_priv(dev);
struct device_node *port;
const char *mac_addr;
int err;
priv->soc->reset_fe();
if (priv->soc->switch_init)
if (priv->soc->switch_init(priv)) {
netdev_err(dev, "failed to initialize switch core\n");
return -ENODEV;
}
fe_reset_phy(priv);
mac_addr = of_get_mac_address(priv->dev->of_node);
if (!IS_ERR_OR_NULL(mac_addr))
ether_addr_copy(dev->dev_addr, mac_addr);
/* If the mac address is invalid, use random mac address */
if (!is_valid_ether_addr(dev->dev_addr)) {
eth_hw_addr_random(dev);
dev_err(priv->dev, "generated random MAC address %pM\n",
dev->dev_addr);
}
err = fe_mdio_init(priv);
if (err)
return err;
if (priv->soc->port_init)
for_each_child_of_node(priv->dev->of_node, port)
if (of_device_is_compatible(port, "mediatek,eth-port") &&
of_device_is_available(port))
priv->soc->port_init(priv, port);
if (priv->phy) {
err = priv->phy->connect(priv);
if (err)
goto err_phy_disconnect;
}
err = fe_hw_init(dev);
if (err)
goto err_phy_disconnect;
if ((priv->flags & FE_FLAG_HAS_SWITCH) && priv->soc->switch_config)
priv->soc->switch_config(priv);
return 0;
err_phy_disconnect:
if (priv->phy)
priv->phy->disconnect(priv);
fe_mdio_cleanup(priv);
return err;
}
static void fe_uninit(struct net_device *dev)
{
struct fe_priv *priv = netdev_priv(dev);
if (priv->phy)
priv->phy->disconnect(priv);
fe_mdio_cleanup(priv);
fe_reg_w32(0, FE_REG_FE_INT_ENABLE);
free_irq(dev->irq, dev);
}
static int fe_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct fe_priv *priv = netdev_priv(dev);
if (!priv->phy_dev)
return -ENODEV;
return phy_mii_ioctl(priv->phy_dev, ifr, cmd);
}
static int fe_change_mtu(struct net_device *dev, int new_mtu)
{
struct fe_priv *priv = netdev_priv(dev);
int frag_size, old_mtu;
u32 fwd_cfg;
old_mtu = dev->mtu;
dev->mtu = new_mtu;
if (!(priv->flags & FE_FLAG_JUMBO_FRAME))
return 0;
/* return early if the buffer sizes will not change */
if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
return 0;
if (old_mtu > ETH_DATA_LEN && new_mtu > ETH_DATA_LEN)
return 0;
if (new_mtu <= ETH_DATA_LEN)
priv->rx_ring.frag_size = fe_max_frag_size(ETH_DATA_LEN);
else
priv->rx_ring.frag_size = PAGE_SIZE;
priv->rx_ring.rx_buf_size = fe_max_buf_size(priv->rx_ring.frag_size);
if (!netif_running(dev))
return 0;
fe_stop(dev);
if (!IS_ENABLED(CONFIG_SOC_MT7621)) {
fwd_cfg = fe_r32(FE_GDMA1_FWD_CFG);
if (new_mtu <= ETH_DATA_LEN) {
fwd_cfg &= ~FE_GDM1_JMB_EN;
} else {
frag_size = fe_max_frag_size(new_mtu);
fwd_cfg &= ~(FE_GDM1_JMB_LEN_MASK << FE_GDM1_JMB_LEN_SHIFT);
fwd_cfg |= (DIV_ROUND_UP(frag_size, 1024) <<
FE_GDM1_JMB_LEN_SHIFT) | FE_GDM1_JMB_EN;
}
fe_w32(fwd_cfg, FE_GDMA1_FWD_CFG);
}
return fe_open(dev);
}
static const struct net_device_ops fe_netdev_ops = {
.ndo_init = fe_init,
.ndo_uninit = fe_uninit,
.ndo_open = fe_open,
.ndo_stop = fe_stop,
.ndo_start_xmit = fe_start_xmit,
.ndo_set_mac_address = fe_set_mac_address,
.ndo_validate_addr = eth_validate_addr,
.ndo_do_ioctl = fe_do_ioctl,
.ndo_change_mtu = fe_change_mtu,
.ndo_tx_timeout = fe_tx_timeout,
.ndo_get_stats64 = fe_get_stats64,
.ndo_vlan_rx_add_vid = fe_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = fe_vlan_rx_kill_vid,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = fe_poll_controller,
#endif
};
static void fe_reset_pending(struct fe_priv *priv)
{
struct net_device *dev = priv->netdev;
int err;
rtnl_lock();
fe_stop(dev);
err = fe_open(dev);
if (err) {
netif_alert(priv, ifup, dev,
"Driver up/down cycle failed, closing device.\n");
dev_close(dev);
}
rtnl_unlock();
}
static const struct fe_work_t fe_work[] = {
{FE_FLAG_RESET_PENDING, fe_reset_pending},
};
static void fe_pending_work(struct work_struct *work)
{
struct fe_priv *priv = container_of(work, struct fe_priv, pending_work);
int i;
bool pending;
for (i = 0; i < ARRAY_SIZE(fe_work); i++) {
pending = test_and_clear_bit(fe_work[i].bitnr,
priv->pending_flags);
if (pending)
fe_work[i].action(priv);
}
}
static int fe_probe(struct platform_device *pdev)
{
struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
const struct of_device_id *match;
struct fe_soc_data *soc;
struct net_device *netdev;
struct fe_priv *priv;
struct clk *sysclk;
int err, napi_weight;
device_reset(&pdev->dev);
match = of_match_device(of_fe_match, &pdev->dev);
soc = (struct fe_soc_data *)match->data;
if (soc->reg_table)
fe_reg_table = soc->reg_table;
else
soc->reg_table = fe_reg_table;
fe_base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(fe_base)) {
err = -EADDRNOTAVAIL;
goto err_out;
}
netdev = alloc_etherdev(sizeof(*priv));
if (!netdev) {
dev_err(&pdev->dev, "alloc_etherdev failed\n");
err = -ENOMEM;
goto err_iounmap;
}
SET_NETDEV_DEV(netdev, &pdev->dev);
netdev->netdev_ops = &fe_netdev_ops;
netdev->base_addr = (unsigned long)fe_base;
netdev->irq = platform_get_irq(pdev, 0);
if (netdev->irq < 0) {
dev_err(&pdev->dev, "no IRQ resource found\n");
err = -ENXIO;
goto err_free_dev;
}
if (soc->init_data)
soc->init_data(soc, netdev);
netdev->vlan_features = netdev->hw_features &
~(NETIF_F_HW_VLAN_CTAG_TX |
NETIF_F_HW_VLAN_CTAG_RX);
netdev->features |= netdev->hw_features;
if (IS_ENABLED(CONFIG_SOC_MT7621))
netdev->max_mtu = 2048;
/* fake rx vlan filter func. to support tx vlan offload func */
if (fe_reg_table[FE_REG_FE_DMA_VID_BASE])
netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
priv = netdev_priv(netdev);
spin_lock_init(&priv->page_lock);
if (fe_reg_table[FE_REG_FE_COUNTER_BASE]) {
priv->hw_stats = kzalloc(sizeof(*priv->hw_stats), GFP_KERNEL);
if (!priv->hw_stats) {
err = -ENOMEM;
goto err_free_dev;
}
spin_lock_init(&priv->hw_stats->stats_lock);
}
sysclk = devm_clk_get(&pdev->dev, NULL);
if (!IS_ERR(sysclk)) {
priv->sysclk = clk_get_rate(sysclk);
} else if ((priv->flags & FE_FLAG_CALIBRATE_CLK)) {
dev_err(&pdev->dev, "this soc needs a clk for calibration\n");
err = -ENXIO;
goto err_free_dev;
}
priv->switch_np = of_parse_phandle(pdev->dev.of_node, "mediatek,switch", 0);
if ((priv->flags & FE_FLAG_HAS_SWITCH) && !priv->switch_np) {
dev_err(&pdev->dev, "failed to read switch phandle\n");
err = -ENODEV;
goto err_free_dev;
}
priv->netdev = netdev;
priv->dev = &pdev->dev;
priv->soc = soc;
priv->msg_enable = netif_msg_init(fe_msg_level, FE_DEFAULT_MSG_ENABLE);
priv->rx_ring.frag_size = fe_max_frag_size(ETH_DATA_LEN);
priv->rx_ring.rx_buf_size = fe_max_buf_size(priv->rx_ring.frag_size);
priv->tx_ring.tx_ring_size = NUM_DMA_DESC;
priv->rx_ring.rx_ring_size = NUM_DMA_DESC;
INIT_WORK(&priv->pending_work, fe_pending_work);
u64_stats_init(&priv->hw_stats->syncp);
napi_weight = 16;
if (priv->flags & FE_FLAG_NAPI_WEIGHT) {
napi_weight *= 4;
priv->tx_ring.tx_ring_size *= 4;
priv->rx_ring.rx_ring_size *= 4;
}
netif_napi_add(netdev, &priv->rx_napi, fe_poll, napi_weight);
fe_set_ethtool_ops(netdev);
err = register_netdev(netdev);
if (err) {
dev_err(&pdev->dev, "error bringing up device\n");
goto err_free_dev;
}
platform_set_drvdata(pdev, netdev);
netif_info(priv, probe, netdev, "mediatek frame engine at 0x%08lx, irq %d\n",
netdev->base_addr, netdev->irq);
return 0;
err_free_dev:
free_netdev(netdev);
err_iounmap:
devm_iounmap(&pdev->dev, fe_base);
err_out:
return err;
}
static int fe_remove(struct platform_device *pdev)
{
struct net_device *dev = platform_get_drvdata(pdev);
struct fe_priv *priv = netdev_priv(dev);
netif_napi_del(&priv->rx_napi);
kfree(priv->hw_stats);
cancel_work_sync(&priv->pending_work);
unregister_netdev(dev);
free_netdev(dev);
platform_set_drvdata(pdev, NULL);
return 0;
}
static struct platform_driver fe_driver = {
.probe = fe_probe,
.remove = fe_remove,
.driver = {
.name = "mtk_soc_eth",
.owner = THIS_MODULE,
.of_match_table = of_fe_match,
},
};
module_platform_driver(fe_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("John Crispin <blogic@openwrt.org>");
MODULE_DESCRIPTION("Ethernet driver for Ralink SoC");
MODULE_VERSION(MTK_FE_DRV_VERSION);