openwrt/target/linux/generic/files/drivers/mtd/nand/mtk_bmt_nmbm.c

2349 lines
61 KiB
C

#include <linux/crc32.h>
#include <linux/slab.h>
#include "mtk_bmt.h"
#define nlog_err(ni, ...) printk(KERN_ERR __VA_ARGS__)
#define nlog_info(ni, ...) printk(KERN_INFO __VA_ARGS__)
#define nlog_debug(ni, ...) printk(KERN_INFO __VA_ARGS__)
#define nlog_warn(ni, ...) printk(KERN_WARNING __VA_ARGS__)
#define NMBM_MAGIC_SIGNATURE 0x304d4d4e /* NMM0 */
#define NMBM_MAGIC_INFO_TABLE 0x314d4d4e /* NMM1 */
#define NMBM_VERSION_MAJOR_S 0
#define NMBM_VERSION_MAJOR_M 0xffff
#define NMBM_VERSION_MINOR_S 16
#define NMBM_VERSION_MINOR_M 0xffff
#define NMBM_VERSION_MAKE(major, minor) (((major) & NMBM_VERSION_MAJOR_M) | \
(((minor) & NMBM_VERSION_MINOR_M) << \
NMBM_VERSION_MINOR_S))
#define NMBM_VERSION_MAJOR_GET(ver) (((ver) >> NMBM_VERSION_MAJOR_S) & \
NMBM_VERSION_MAJOR_M)
#define NMBM_VERSION_MINOR_GET(ver) (((ver) >> NMBM_VERSION_MINOR_S) & \
NMBM_VERSION_MINOR_M)
#define NMBM_BITMAP_UNIT_SIZE (sizeof(u32))
#define NMBM_BITMAP_BITS_PER_BLOCK 2
#define NMBM_BITMAP_BITS_PER_UNIT (8 * sizeof(u32))
#define NMBM_BITMAP_BLOCKS_PER_UNIT (NMBM_BITMAP_BITS_PER_UNIT / \
NMBM_BITMAP_BITS_PER_BLOCK)
#define NMBM_SPARE_BLOCK_MULTI 1
#define NMBM_SPARE_BLOCK_DIV 2
#define NMBM_SPARE_BLOCK_MIN 2
#define NMBM_MGMT_DIV 16
#define NMBM_MGMT_BLOCKS_MIN 32
#define NMBM_TRY_COUNT 3
#define BLOCK_ST_BAD 0
#define BLOCK_ST_NEED_REMAP 2
#define BLOCK_ST_GOOD 3
#define BLOCK_ST_MASK 3
#define NMBM_VER_MAJOR 1
#define NMBM_VER_MINOR 0
#define NMBM_VER NMBM_VERSION_MAKE(NMBM_VER_MAJOR, \
NMBM_VER_MINOR)
struct nmbm_header {
u32 magic;
u32 version;
u32 size;
u32 checksum;
};
struct nmbm_signature {
struct nmbm_header header;
uint64_t nand_size;
u32 block_size;
u32 page_size;
u32 spare_size;
u32 mgmt_start_pb;
u8 max_try_count;
u8 padding[3];
};
struct nmbm_info_table_header {
struct nmbm_header header;
u32 write_count;
u32 state_table_off;
u32 mapping_table_off;
u32 padding;
};
struct nmbm_instance {
u32 rawpage_size;
u32 rawblock_size;
u32 rawchip_size;
struct nmbm_signature signature;
u8 *info_table_cache;
u32 info_table_size;
u32 info_table_spare_blocks;
struct nmbm_info_table_header info_table;
u32 *block_state;
u32 block_state_changed;
u32 state_table_size;
int32_t *block_mapping;
u32 block_mapping_changed;
u32 mapping_table_size;
u8 *page_cache;
int protected;
u32 block_count;
u32 data_block_count;
u32 mgmt_start_ba;
u32 main_table_ba;
u32 backup_table_ba;
u32 mapping_blocks_ba;
u32 mapping_blocks_top_ba;
u32 signature_ba;
u32 max_ratio;
u32 max_reserved_blocks;
bool empty_page_ecc_ok;
bool force_create;
};
static inline u32 nmbm_crc32(u32 crcval, const void *buf, size_t size)
{
unsigned int chksz;
const unsigned char *p = buf;
while (size) {
if (size > UINT_MAX)
chksz = UINT_MAX;
else
chksz = (uint)size;
crcval = crc32_le(crcval, p, chksz);
size -= chksz;
p += chksz;
}
return crcval;
}
/*
* nlog_table_creation - Print log of table creation event
* @ni: NMBM instance structure
* @main_table: whether the table is main info table
* @start_ba: start block address of the table
* @end_ba: block address after the end of the table
*/
static void nlog_table_creation(struct nmbm_instance *ni, bool main_table,
uint32_t start_ba, uint32_t end_ba)
{
if (start_ba == end_ba - 1)
nlog_info(ni, "%s info table has been written to block %u\n",
main_table ? "Main" : "Backup", start_ba);
else
nlog_info(ni, "%s info table has been written to block %u-%u\n",
main_table ? "Main" : "Backup", start_ba, end_ba - 1);
}
/*
* nlog_table_update - Print log of table update event
* @ni: NMBM instance structure
* @main_table: whether the table is main info table
* @start_ba: start block address of the table
* @end_ba: block address after the end of the table
*/
static void nlog_table_update(struct nmbm_instance *ni, bool main_table,
uint32_t start_ba, uint32_t end_ba)
{
if (start_ba == end_ba - 1)
nlog_debug(ni, "%s info table has been updated in block %u\n",
main_table ? "Main" : "Backup", start_ba);
else
nlog_debug(ni, "%s info table has been updated in block %u-%u\n",
main_table ? "Main" : "Backup", start_ba, end_ba - 1);
}
/*
* nlog_table_found - Print log of table found event
* @ni: NMBM instance structure
* @first_table: whether the table is first found info table
* @write_count: write count of the info table
* @start_ba: start block address of the table
* @end_ba: block address after the end of the table
*/
static void nlog_table_found(struct nmbm_instance *ni, bool first_table,
uint32_t write_count, uint32_t start_ba,
uint32_t end_ba)
{
if (start_ba == end_ba - 1)
nlog_info(ni, "%s info table with writecount %u found in block %u\n",
first_table ? "First" : "Second", write_count,
start_ba);
else
nlog_info(ni, "%s info table with writecount %u found in block %u-%u\n",
first_table ? "First" : "Second", write_count,
start_ba, end_ba - 1);
}
/*****************************************************************************/
/* Address conversion functions */
/*****************************************************************************/
/*
* ba2addr - Convert a block address to linear address
* @ni: NMBM instance structure
* @ba: Block address
*/
static uint64_t ba2addr(struct nmbm_instance *ni, uint32_t ba)
{
return (uint64_t)ba << bmtd.blk_shift;
}
/*
* size2blk - Get minimum required blocks for storing specific size of data
* @ni: NMBM instance structure
* @size: size for storing
*/
static uint32_t size2blk(struct nmbm_instance *ni, uint64_t size)
{
return (size + bmtd.blk_size - 1) >> bmtd.blk_shift;
}
/*****************************************************************************/
/* High level NAND chip APIs */
/*****************************************************************************/
/*
* nmbm_read_phys_page - Read page with retry
* @ni: NMBM instance structure
* @addr: linear address where the data will be read from
* @data: the main data to be read
* @oob: the oob data to be read
*
* Read a page for at most NMBM_TRY_COUNT times.
*
* Return 0 for success, positive value for corrected bitflip count,
* -EBADMSG for ecc error, other negative values for other errors
*/
static int nmbm_read_phys_page(struct nmbm_instance *ni, uint64_t addr,
void *data, void *oob)
{
int tries, ret;
for (tries = 0; tries < NMBM_TRY_COUNT; tries++) {
struct mtd_oob_ops ops = {
.mode = MTD_OPS_PLACE_OOB,
.oobbuf = oob,
.datbuf = data,
};
if (data)
ops.len = bmtd.pg_size;
if (oob)
ops.ooblen = mtd_oobavail(bmtd.mtd, &ops);
ret = bmtd._read_oob(bmtd.mtd, addr, &ops);
if (ret == -EUCLEAN)
return min_t(u32, bmtd.mtd->bitflip_threshold + 1,
bmtd.mtd->ecc_strength);
if (ret >= 0)
return 0;
}
if (ret != -EBADMSG)
nlog_err(ni, "Page read failed at address 0x%08llx\n", addr);
return ret;
}
/*
* nmbm_write_phys_page - Write page with retry
* @ni: NMBM instance structure
* @addr: linear address where the data will be written to
* @data: the main data to be written
* @oob: the oob data to be written
*
* Write a page for at most NMBM_TRY_COUNT times.
*/
static bool nmbm_write_phys_page(struct nmbm_instance *ni, uint64_t addr,
const void *data, const void *oob)
{
int tries, ret;
for (tries = 0; tries < NMBM_TRY_COUNT; tries++) {
struct mtd_oob_ops ops = {
.mode = MTD_OPS_PLACE_OOB,
.oobbuf = (void *)oob,
.datbuf = (void *)data,
};
if (data)
ops.len = bmtd.pg_size;
if (oob)
ops.ooblen = mtd_oobavail(bmtd.mtd, &ops);
ret = bmtd._write_oob(bmtd.mtd, addr, &ops);
if (!ret)
return true;
}
nlog_err(ni, "Page write failed at address 0x%08llx\n", addr);
return false;
}
/*
* nmbm_erase_phys_block - Erase a block with retry
* @ni: NMBM instance structure
* @addr: Linear address
*
* Erase a block for at most NMBM_TRY_COUNT times.
*/
static bool nmbm_erase_phys_block(struct nmbm_instance *ni, uint64_t addr)
{
int tries, ret;
for (tries = 0; tries < NMBM_TRY_COUNT; tries++) {
struct erase_info ei = {
.addr = addr,
.len = bmtd.mtd->erasesize,
};
ret = bmtd._erase(bmtd.mtd, &ei);
if (!ret)
return true;
}
nlog_err(ni, "Block erasure failed at address 0x%08llx\n", addr);
return false;
}
/*
* nmbm_check_bad_phys_block - Check whether a block is marked bad in OOB
* @ni: NMBM instance structure
* @ba: block address
*/
static bool nmbm_check_bad_phys_block(struct nmbm_instance *ni, uint32_t ba)
{
uint64_t addr = ba2addr(ni, ba);
return bmtd._block_isbad(bmtd.mtd, addr);
}
/*
* nmbm_mark_phys_bad_block - Mark a block bad
* @ni: NMBM instance structure
* @addr: Linear address
*/
static int nmbm_mark_phys_bad_block(struct nmbm_instance *ni, uint32_t ba)
{
uint64_t addr = ba2addr(ni, ba);
nlog_info(ni, "Block %u [0x%08llx] will be marked bad\n", ba, addr);
return bmtd._block_markbad(bmtd.mtd, addr);
}
/*****************************************************************************/
/* NMBM related functions */
/*****************************************************************************/
/*
* nmbm_check_header - Check whether a NMBM structure is valid
* @data: pointer to a NMBM structure with a NMBM header at beginning
* @size: Size of the buffer pointed by @header
*
* The size of the NMBM structure may be larger than NMBM header,
* e.g. block mapping table and block state table.
*/
static bool nmbm_check_header(const void *data, uint32_t size)
{
const struct nmbm_header *header = data;
struct nmbm_header nhdr;
uint32_t new_checksum;
/*
* Make sure expected structure size is equal or smaller than
* buffer size.
*/
if (header->size > size)
return false;
memcpy(&nhdr, data, sizeof(nhdr));
nhdr.checksum = 0;
new_checksum = nmbm_crc32(0, &nhdr, sizeof(nhdr));
if (header->size > sizeof(nhdr))
new_checksum = nmbm_crc32(new_checksum,
(const uint8_t *)data + sizeof(nhdr),
header->size - sizeof(nhdr));
if (header->checksum != new_checksum)
return false;
return true;
}
/*
* nmbm_update_checksum - Update checksum of a NMBM structure
* @header: pointer to a NMBM structure with a NMBM header at beginning
*
* The size of the NMBM structure must be specified by @header->size
*/
static void nmbm_update_checksum(struct nmbm_header *header)
{
header->checksum = 0;
header->checksum = nmbm_crc32(0, header, header->size);
}
/*
* nmbm_get_spare_block_count - Calculate number of blocks should be reserved
* @block_count: number of blocks of data
*
* Calculate number of blocks should be reserved for data
*/
static uint32_t nmbm_get_spare_block_count(uint32_t block_count)
{
uint32_t val;
val = (block_count + NMBM_SPARE_BLOCK_DIV / 2) / NMBM_SPARE_BLOCK_DIV;
val *= NMBM_SPARE_BLOCK_MULTI;
if (val < NMBM_SPARE_BLOCK_MIN)
val = NMBM_SPARE_BLOCK_MIN;
return val;
}
/*
* nmbm_get_block_state_raw - Get state of a block from raw block state table
* @block_state: pointer to raw block state table (bitmap)
* @ba: block address
*/
static uint32_t nmbm_get_block_state_raw(u32 *block_state,
uint32_t ba)
{
uint32_t unit, shift;
unit = ba / NMBM_BITMAP_BLOCKS_PER_UNIT;
shift = (ba % NMBM_BITMAP_BLOCKS_PER_UNIT) * NMBM_BITMAP_BITS_PER_BLOCK;
return (block_state[unit] >> shift) & BLOCK_ST_MASK;
}
/*
* nmbm_get_block_state - Get state of a block from block state table
* @ni: NMBM instance structure
* @ba: block address
*/
static uint32_t nmbm_get_block_state(struct nmbm_instance *ni, uint32_t ba)
{
return nmbm_get_block_state_raw(ni->block_state, ba);
}
/*
* nmbm_set_block_state - Set state of a block to block state table
* @ni: NMBM instance structure
* @ba: block address
* @state: block state
*
* Set state of a block. If the block state changed, ni->block_state_changed
* will be increased.
*/
static bool nmbm_set_block_state(struct nmbm_instance *ni, uint32_t ba,
uint32_t state)
{
uint32_t unit, shift, orig;
u32 uv;
unit = ba / NMBM_BITMAP_BLOCKS_PER_UNIT;
shift = (ba % NMBM_BITMAP_BLOCKS_PER_UNIT) * NMBM_BITMAP_BITS_PER_BLOCK;
orig = (ni->block_state[unit] >> shift) & BLOCK_ST_MASK;
state &= BLOCK_ST_MASK;
uv = ni->block_state[unit] & (~(BLOCK_ST_MASK << shift));
uv |= state << shift;
ni->block_state[unit] = uv;
if (orig != state) {
ni->block_state_changed++;
return true;
}
return false;
}
/*
* nmbm_block_walk_asc - Skip specified number of good blocks, ascending addr.
* @ni: NMBM instance structure
* @ba: start physical block address
* @nba: return physical block address after walk
* @count: number of good blocks to be skipped
* @limit: highest block address allowed for walking
*
* Start from @ba, skipping any bad blocks, counting @count good blocks, and
* return the next good block address.
*
* If no enough good blocks counted while @limit reached, false will be returned.
*
* If @count == 0, nearest good block address will be returned.
* @limit is not counted in walking.
*/
static bool nmbm_block_walk_asc(struct nmbm_instance *ni, uint32_t ba,
uint32_t *nba, uint32_t count,
uint32_t limit)
{
int32_t nblock = count;
if (limit >= ni->block_count)
limit = ni->block_count - 1;
while (ba < limit) {
if (nmbm_get_block_state(ni, ba) == BLOCK_ST_GOOD)
nblock--;
if (nblock < 0) {
*nba = ba;
return true;
}
ba++;
}
return false;
}
/*
* nmbm_block_walk_desc - Skip specified number of good blocks, descending addr
* @ni: NMBM instance structure
* @ba: start physical block address
* @nba: return physical block address after walk
* @count: number of good blocks to be skipped
* @limit: lowest block address allowed for walking
*
* Start from @ba, skipping any bad blocks, counting @count good blocks, and
* return the next good block address.
*
* If no enough good blocks counted while @limit reached, false will be returned.
*
* If @count == 0, nearest good block address will be returned.
* @limit is not counted in walking.
*/
static bool nmbm_block_walk_desc(struct nmbm_instance *ni, uint32_t ba,
uint32_t *nba, uint32_t count, uint32_t limit)
{
int32_t nblock = count;
if (limit >= ni->block_count)
limit = ni->block_count - 1;
while (ba > limit) {
if (nmbm_get_block_state(ni, ba) == BLOCK_ST_GOOD)
nblock--;
if (nblock < 0) {
*nba = ba;
return true;
}
ba--;
}
return false;
}
/*
* nmbm_block_walk - Skip specified number of good blocks from curr. block addr
* @ni: NMBM instance structure
* @ascending: whether to walk ascending
* @ba: start physical block address
* @nba: return physical block address after walk
* @count: number of good blocks to be skipped
* @limit: highest/lowest block address allowed for walking
*
* Start from @ba, skipping any bad blocks, counting @count good blocks, and
* return the next good block address.
*
* If no enough good blocks counted while @limit reached, false will be returned.
*
* If @count == 0, nearest good block address will be returned.
* @limit can be set to negative if no limit required.
* @limit is not counted in walking.
*/
static bool nmbm_block_walk(struct nmbm_instance *ni, bool ascending,
uint32_t ba, uint32_t *nba, int32_t count,
int32_t limit)
{
if (ascending)
return nmbm_block_walk_asc(ni, ba, nba, count, limit);
return nmbm_block_walk_desc(ni, ba, nba, count, limit);
}
/*
* nmbm_scan_badblocks - Scan and record all bad blocks
* @ni: NMBM instance structure
*
* Scan the entire lower NAND chip and record all bad blocks in to block state
* table.
*/
static void nmbm_scan_badblocks(struct nmbm_instance *ni)
{
uint32_t ba;
for (ba = 0; ba < ni->block_count; ba++) {
if (nmbm_check_bad_phys_block(ni, ba)) {
nmbm_set_block_state(ni, ba, BLOCK_ST_BAD);
nlog_info(ni, "Bad block %u [0x%08llx]\n", ba,
ba2addr(ni, ba));
}
}
}
/*
* nmbm_build_mapping_table - Build initial block mapping table
* @ni: NMBM instance structure
*
* The initial mapping table will be compatible with the stratage of
* factory production.
*/
static void nmbm_build_mapping_table(struct nmbm_instance *ni)
{
uint32_t pb, lb;
for (pb = 0, lb = 0; pb < ni->mgmt_start_ba; pb++) {
if (nmbm_get_block_state(ni, pb) == BLOCK_ST_BAD)
continue;
/* Always map to the next good block */
ni->block_mapping[lb++] = pb;
}
ni->data_block_count = lb;
/* Unusable/Management blocks */
for (pb = lb; pb < ni->block_count; pb++)
ni->block_mapping[pb] = -1;
}
/*
* nmbm_erase_block_and_check - Erase a block and check its usability
* @ni: NMBM instance structure
* @ba: block address to be erased
*
* Erase a block anc check its usability
*
* Return true if the block is usable, false if erasure failure or the block
* has too many bitflips.
*/
static bool nmbm_erase_block_and_check(struct nmbm_instance *ni, uint32_t ba)
{
uint64_t addr, off;
bool success;
int ret;
success = nmbm_erase_phys_block(ni, ba2addr(ni, ba));
if (!success)
return false;
if (!ni->empty_page_ecc_ok)
return true;
/* Check every page to make sure there aren't too many bitflips */
addr = ba2addr(ni, ba);
for (off = 0; off < bmtd.blk_size; off += bmtd.pg_size) {
ret = nmbm_read_phys_page(ni, addr + off, ni->page_cache, NULL);
if (ret == -EBADMSG) {
/*
* empty_page_ecc_ok means the empty page is
* still protected by ECC. So reading pages with ECC
* enabled and -EBADMSG means there are too many
* bitflips that can't be recovered, and the block
* containing the page should be marked bad.
*/
nlog_err(ni,
"Too many bitflips in empty page at 0x%llx\n",
addr + off);
return false;
}
}
return true;
}
/*
* nmbm_erase_range - Erase a range of blocks
* @ni: NMBM instance structure
* @ba: block address where the erasure will start
* @limit: top block address allowed for erasure
*
* Erase blocks within the specific range. Newly-found bad blocks will be
* marked.
*
* @limit is not counted into the allowed erasure address.
*/
static void nmbm_erase_range(struct nmbm_instance *ni, uint32_t ba,
uint32_t limit)
{
bool success;
while (ba < limit) {
if (nmbm_get_block_state(ni, ba) != BLOCK_ST_GOOD)
goto next_block;
/* Insurance to detect unexpected bad block marked by user */
if (nmbm_check_bad_phys_block(ni, ba)) {
nmbm_set_block_state(ni, ba, BLOCK_ST_BAD);
goto next_block;
}
success = nmbm_erase_block_and_check(ni, ba);
if (success)
goto next_block;
nmbm_mark_phys_bad_block(ni, ba);
nmbm_set_block_state(ni, ba, BLOCK_ST_BAD);
next_block:
ba++;
}
}
/*
* nmbm_write_repeated_data - Write critical data to a block with retry
* @ni: NMBM instance structure
* @ba: block address where the data will be written to
* @data: the data to be written
* @size: size of the data
*
* Write data to every page of the block. Success only if all pages within
* this block have been successfully written.
*
* Make sure data size is not bigger than one page.
*
* This function will write and verify every page for at most
* NMBM_TRY_COUNT times.
*/
static bool nmbm_write_repeated_data(struct nmbm_instance *ni, uint32_t ba,
const void *data, uint32_t size)
{
uint64_t addr, off;
bool success;
int ret;
if (size > bmtd.pg_size)
return false;
addr = ba2addr(ni, ba);
for (off = 0; off < bmtd.blk_size; off += bmtd.pg_size) {
/* Prepare page data. fill 0xff to unused region */
memcpy(ni->page_cache, data, size);
memset(ni->page_cache + size, 0xff, ni->rawpage_size - size);
success = nmbm_write_phys_page(ni, addr + off, ni->page_cache, NULL);
if (!success)
return false;
/* Verify the data just written. ECC error indicates failure */
ret = nmbm_read_phys_page(ni, addr + off, ni->page_cache, NULL);
if (ret < 0)
return false;
if (memcmp(ni->page_cache, data, size))
return false;
}
return true;
}
/*
* nmbm_write_signature - Write signature to NAND chip
* @ni: NMBM instance structure
* @limit: top block address allowed for writing
* @signature: the signature to be written
* @signature_ba: the actual block address where signature is written to
*
* Write signature within a specific range, from chip bottom to limit.
* At most one block will be written.
*
* @limit is not counted into the allowed write address.
*/
static bool nmbm_write_signature(struct nmbm_instance *ni, uint32_t limit,
const struct nmbm_signature *signature,
uint32_t *signature_ba)
{
uint32_t ba = ni->block_count - 1;
bool success;
while (ba > limit) {
if (nmbm_get_block_state(ni, ba) != BLOCK_ST_GOOD)
goto next_block;
/* Insurance to detect unexpected bad block marked by user */
if (nmbm_check_bad_phys_block(ni, ba)) {
nmbm_set_block_state(ni, ba, BLOCK_ST_BAD);
goto next_block;
}
success = nmbm_erase_block_and_check(ni, ba);
if (!success)
goto skip_bad_block;
success = nmbm_write_repeated_data(ni, ba, signature,
sizeof(*signature));
if (success) {
*signature_ba = ba;
return true;
}
skip_bad_block:
nmbm_mark_phys_bad_block(ni, ba);
nmbm_set_block_state(ni, ba, BLOCK_ST_BAD);
next_block:
ba--;
};
return false;
}
/*
* nmbn_read_data - Read data
* @ni: NMBM instance structure
* @addr: linear address where the data will be read from
* @data: the data to be read
* @size: the size of data
*
* Read data range.
* Every page will be tried for at most NMBM_TRY_COUNT times.
*
* Return 0 for success, positive value for corrected bitflip count,
* -EBADMSG for ecc error, other negative values for other errors
*/
static int nmbn_read_data(struct nmbm_instance *ni, uint64_t addr, void *data,
uint32_t size)
{
uint64_t off = addr;
uint8_t *ptr = data;
uint32_t sizeremain = size, chunksize, leading;
int ret;
while (sizeremain) {
leading = off & (bmtd.pg_size - 1);
chunksize = bmtd.pg_size - leading;
if (chunksize > sizeremain)
chunksize = sizeremain;
if (chunksize == bmtd.pg_size) {
ret = nmbm_read_phys_page(ni, off - leading, ptr, NULL);
if (ret < 0)
return ret;
} else {
ret = nmbm_read_phys_page(ni, off - leading,
ni->page_cache, NULL);
if (ret < 0)
return ret;
memcpy(ptr, ni->page_cache + leading, chunksize);
}
off += chunksize;
ptr += chunksize;
sizeremain -= chunksize;
}
return 0;
}
/*
* nmbn_write_verify_data - Write data with validation
* @ni: NMBM instance structure
* @addr: linear address where the data will be written to
* @data: the data to be written
* @size: the size of data
*
* Write data and verify.
* Every page will be tried for at most NMBM_TRY_COUNT times.
*/
static bool nmbn_write_verify_data(struct nmbm_instance *ni, uint64_t addr,
const void *data, uint32_t size)
{
uint64_t off = addr;
const uint8_t *ptr = data;
uint32_t sizeremain = size, chunksize, leading;
bool success;
int ret;
while (sizeremain) {
leading = off & (bmtd.pg_size - 1);
chunksize = bmtd.pg_size - leading;
if (chunksize > sizeremain)
chunksize = sizeremain;
/* Prepare page data. fill 0xff to unused region */
memset(ni->page_cache, 0xff, ni->rawpage_size);
memcpy(ni->page_cache + leading, ptr, chunksize);
success = nmbm_write_phys_page(ni, off - leading,
ni->page_cache, NULL);
if (!success)
return false;
/* Verify the data just written. ECC error indicates failure */
ret = nmbm_read_phys_page(ni, off - leading, ni->page_cache, NULL);
if (ret < 0)
return false;
if (memcmp(ni->page_cache + leading, ptr, chunksize))
return false;
off += chunksize;
ptr += chunksize;
sizeremain -= chunksize;
}
return true;
}
/*
* nmbm_write_mgmt_range - Write management data into NAND within a range
* @ni: NMBM instance structure
* @addr: preferred start block address for writing
* @limit: highest block address allowed for writing
* @data: the data to be written
* @size: the size of data
* @actual_start_ba: actual start block address of data
* @actual_end_ba: block address after the end of data
*
* @limit is not counted into the allowed write address.
*/
static bool nmbm_write_mgmt_range(struct nmbm_instance *ni, uint32_t ba,
uint32_t limit, const void *data,
uint32_t size, uint32_t *actual_start_ba,
uint32_t *actual_end_ba)
{
const uint8_t *ptr = data;
uint32_t sizeremain = size, chunksize;
bool success;
while (sizeremain && ba < limit) {
chunksize = sizeremain;
if (chunksize > bmtd.blk_size)
chunksize = bmtd.blk_size;
if (nmbm_get_block_state(ni, ba) != BLOCK_ST_GOOD)
goto next_block;
/* Insurance to detect unexpected bad block marked by user */
if (nmbm_check_bad_phys_block(ni, ba)) {
nmbm_set_block_state(ni, ba, BLOCK_ST_BAD);
goto next_block;
}
success = nmbm_erase_block_and_check(ni, ba);
if (!success)
goto skip_bad_block;
success = nmbn_write_verify_data(ni, ba2addr(ni, ba), ptr,
chunksize);
if (!success)
goto skip_bad_block;
if (sizeremain == size)
*actual_start_ba = ba;
ptr += chunksize;
sizeremain -= chunksize;
goto next_block;
skip_bad_block:
nmbm_mark_phys_bad_block(ni, ba);
nmbm_set_block_state(ni, ba, BLOCK_ST_BAD);
next_block:
ba++;
}
if (sizeremain)
return false;
*actual_end_ba = ba;
return true;
}
/*
* nmbm_generate_info_table_cache - Generate info table cache data
* @ni: NMBM instance structure
*
* Generate info table cache data to be written into flash.
*/
static bool nmbm_generate_info_table_cache(struct nmbm_instance *ni)
{
bool changed = false;
memset(ni->info_table_cache, 0xff, ni->info_table_size);
memcpy(ni->info_table_cache + ni->info_table.state_table_off,
ni->block_state, ni->state_table_size);
memcpy(ni->info_table_cache + ni->info_table.mapping_table_off,
ni->block_mapping, ni->mapping_table_size);
ni->info_table.header.magic = NMBM_MAGIC_INFO_TABLE;
ni->info_table.header.version = NMBM_VER;
ni->info_table.header.size = ni->info_table_size;
if (ni->block_state_changed || ni->block_mapping_changed) {
ni->info_table.write_count++;
changed = true;
}
memcpy(ni->info_table_cache, &ni->info_table, sizeof(ni->info_table));
nmbm_update_checksum((struct nmbm_header *)ni->info_table_cache);
return changed;
}
/*
* nmbm_write_info_table - Write info table into NAND within a range
* @ni: NMBM instance structure
* @ba: preferred start block address for writing
* @limit: highest block address allowed for writing
* @actual_start_ba: actual start block address of info table
* @actual_end_ba: block address after the end of info table
*
* @limit is counted into the allowed write address.
*/
static bool nmbm_write_info_table(struct nmbm_instance *ni, uint32_t ba,
uint32_t limit, uint32_t *actual_start_ba,
uint32_t *actual_end_ba)
{
return nmbm_write_mgmt_range(ni, ba, limit, ni->info_table_cache,
ni->info_table_size, actual_start_ba,
actual_end_ba);
}
/*
* nmbm_mark_tables_clean - Mark info table `clean'
* @ni: NMBM instance structure
*/
static void nmbm_mark_tables_clean(struct nmbm_instance *ni)
{
ni->block_state_changed = 0;
ni->block_mapping_changed = 0;
}
/*
* nmbm_try_reserve_blocks - Reserve blocks with compromisation
* @ni: NMBM instance structure
* @ba: start physical block address
* @nba: return physical block address after reservation
* @count: number of good blocks to be skipped
* @min_count: minimum number of good blocks to be skipped
* @limit: highest/lowest block address allowed for walking
*
* Reserve specific blocks. If failed, try to reserve as many as possible.
*/
static bool nmbm_try_reserve_blocks(struct nmbm_instance *ni, uint32_t ba,
uint32_t *nba, uint32_t count,
int32_t min_count, int32_t limit)
{
int32_t nblocks = count;
bool success;
while (nblocks >= min_count) {
success = nmbm_block_walk(ni, true, ba, nba, nblocks, limit);
if (success)
return true;
nblocks--;
}
return false;
}
/*
* nmbm_rebuild_info_table - Build main & backup info table from scratch
* @ni: NMBM instance structure
* @allow_no_gap: allow no spare blocks between two tables
*/
static bool nmbm_rebuild_info_table(struct nmbm_instance *ni)
{
uint32_t table_start_ba, table_end_ba, next_start_ba;
uint32_t main_table_end_ba;
bool success;
/* Set initial value */
ni->main_table_ba = 0;
ni->backup_table_ba = 0;
ni->mapping_blocks_ba = ni->mapping_blocks_top_ba;
/* Write main table */
success = nmbm_write_info_table(ni, ni->mgmt_start_ba,
ni->mapping_blocks_top_ba,
&table_start_ba, &table_end_ba);
if (!success) {
/* Failed to write main table, data will be lost */
nlog_err(ni, "Unable to write at least one info table!\n");
nlog_err(ni, "Please save your data before power off!\n");
ni->protected = 1;
return false;
}
/* Main info table is successfully written, record its offset */
ni->main_table_ba = table_start_ba;
main_table_end_ba = table_end_ba;
/* Adjust mapping_blocks_ba */
ni->mapping_blocks_ba = table_end_ba;
nmbm_mark_tables_clean(ni);
nlog_table_creation(ni, true, table_start_ba, table_end_ba);
/* Reserve spare blocks for main info table. */
success = nmbm_try_reserve_blocks(ni, table_end_ba,
&next_start_ba,
ni->info_table_spare_blocks, 0,
ni->mapping_blocks_top_ba -
size2blk(ni, ni->info_table_size));
if (!success) {
/* There is no spare block. */
nlog_debug(ni, "No room for backup info table\n");
return true;
}
/* Write backup info table. */
success = nmbm_write_info_table(ni, next_start_ba,
ni->mapping_blocks_top_ba,
&table_start_ba, &table_end_ba);
if (!success) {
/* There is no enough blocks for backup table. */
nlog_debug(ni, "No room for backup info table\n");
return true;
}
/* Backup table is successfully written, record its offset */
ni->backup_table_ba = table_start_ba;
/* Adjust mapping_blocks_off */
ni->mapping_blocks_ba = table_end_ba;
/* Erase spare blocks of main table to clean possible interference data */
nmbm_erase_range(ni, main_table_end_ba, ni->backup_table_ba);
nlog_table_creation(ni, false, table_start_ba, table_end_ba);
return true;
}
/*
* nmbm_rescue_single_info_table - Rescue when there is only one info table
* @ni: NMBM instance structure
*
* This function is called when there is only one info table exists.
* This function may fail if we can't write new info table
*/
static bool nmbm_rescue_single_info_table(struct nmbm_instance *ni)
{
uint32_t table_start_ba, table_end_ba, write_ba;
bool success;
/* Try to write new info table in front of existing table */
success = nmbm_write_info_table(ni, ni->mgmt_start_ba,
ni->main_table_ba,
&table_start_ba,
&table_end_ba);
if (success) {
/*
* New table becomes the main table, existing table becomes
* the backup table.
*/
ni->backup_table_ba = ni->main_table_ba;
ni->main_table_ba = table_start_ba;
nmbm_mark_tables_clean(ni);
/* Erase spare blocks of main table to clean possible interference data */
nmbm_erase_range(ni, table_end_ba, ni->backup_table_ba);
nlog_table_creation(ni, true, table_start_ba, table_end_ba);
return true;
}
/* Try to reserve spare blocks for existing table */
success = nmbm_try_reserve_blocks(ni, ni->mapping_blocks_ba, &write_ba,
ni->info_table_spare_blocks, 0,
ni->mapping_blocks_top_ba -
size2blk(ni, ni->info_table_size));
if (!success) {
nlog_warn(ni, "Failed to rescue single info table\n");
return false;
}
/* Try to write new info table next to the existing table */
while (write_ba >= ni->mapping_blocks_ba) {
success = nmbm_write_info_table(ni, write_ba,
ni->mapping_blocks_top_ba,
&table_start_ba,
&table_end_ba);
if (success)
break;
write_ba--;
}
if (success) {
/* Erase spare blocks of main table to clean possible interference data */
nmbm_erase_range(ni, ni->mapping_blocks_ba, table_start_ba);
/* New table becomes the backup table */
ni->backup_table_ba = table_start_ba;
ni->mapping_blocks_ba = table_end_ba;
nmbm_mark_tables_clean(ni);
nlog_table_creation(ni, false, table_start_ba, table_end_ba);
return true;
}
nlog_warn(ni, "Failed to rescue single info table\n");
return false;
}
/*
* nmbm_update_single_info_table - Update specific one info table
* @ni: NMBM instance structure
*/
static bool nmbm_update_single_info_table(struct nmbm_instance *ni,
bool update_main_table)
{
uint32_t write_start_ba, write_limit, table_start_ba, table_end_ba;
bool success;
/* Determine the write range */
if (update_main_table) {
write_start_ba = ni->main_table_ba;
write_limit = ni->backup_table_ba;
} else {
write_start_ba = ni->backup_table_ba;
write_limit = ni->mapping_blocks_top_ba;
}
success = nmbm_write_info_table(ni, write_start_ba, write_limit,
&table_start_ba, &table_end_ba);
if (success) {
if (update_main_table) {
ni->main_table_ba = table_start_ba;
} else {
ni->backup_table_ba = table_start_ba;
ni->mapping_blocks_ba = table_end_ba;
}
nmbm_mark_tables_clean(ni);
nlog_table_update(ni, update_main_table, table_start_ba,
table_end_ba);
return true;
}
if (update_main_table) {
/*
* If failed to update main table, make backup table the new
* main table, and call nmbm_rescue_single_info_table()
*/
nlog_warn(ni, "Unable to update %s info table\n",
update_main_table ? "Main" : "Backup");
ni->main_table_ba = ni->backup_table_ba;
ni->backup_table_ba = 0;
return nmbm_rescue_single_info_table(ni);
}
/* Only one table left */
ni->mapping_blocks_ba = ni->backup_table_ba;
ni->backup_table_ba = 0;
return false;
}
/*
* nmbm_rescue_main_info_table - Rescue when failed to write main info table
* @ni: NMBM instance structure
*
* This function is called when main info table failed to be written, and
* backup info table exists.
*/
static bool nmbm_rescue_main_info_table(struct nmbm_instance *ni)
{
uint32_t tmp_table_start_ba, tmp_table_end_ba, main_table_start_ba;
uint32_t main_table_end_ba, write_ba;
uint32_t info_table_erasesize = size2blk(ni, ni->info_table_size);
bool success;
/* Try to reserve spare blocks for existing backup info table */
success = nmbm_try_reserve_blocks(ni, ni->mapping_blocks_ba, &write_ba,
ni->info_table_spare_blocks, 0,
ni->mapping_blocks_top_ba -
info_table_erasesize);
if (!success) {
/* There is no spare block. Backup info table becomes the main table. */
nlog_err(ni, "No room for temporary info table\n");
ni->main_table_ba = ni->backup_table_ba;
ni->backup_table_ba = 0;
return true;
}
/* Try to write temporary info table into spare unmapped blocks */
while (write_ba >= ni->mapping_blocks_ba) {
success = nmbm_write_info_table(ni, write_ba,
ni->mapping_blocks_top_ba,
&tmp_table_start_ba,
&tmp_table_end_ba);
if (success)
break;
write_ba--;
}
if (!success) {
/* Backup info table becomes the main table */
nlog_err(ni, "Failed to update main info table\n");
ni->main_table_ba = ni->backup_table_ba;
ni->backup_table_ba = 0;
return true;
}
/* Adjust mapping_blocks_off */
ni->mapping_blocks_ba = tmp_table_end_ba;
/*
* Now write main info table at the beginning of management area.
* This operation will generally destroy the original backup info
* table.
*/
success = nmbm_write_info_table(ni, ni->mgmt_start_ba,
tmp_table_start_ba,
&main_table_start_ba,
&main_table_end_ba);
if (!success) {
/* Temporary info table becomes the main table */
ni->main_table_ba = tmp_table_start_ba;
ni->backup_table_ba = 0;
nmbm_mark_tables_clean(ni);
nlog_err(ni, "Failed to update main info table\n");
return true;
}
/* Main info table has been successfully written, record its offset */
ni->main_table_ba = main_table_start_ba;
nmbm_mark_tables_clean(ni);
nlog_table_creation(ni, true, main_table_start_ba, main_table_end_ba);
/*
* Temporary info table becomes the new backup info table if it's
* not overwritten.
*/
if (main_table_end_ba <= tmp_table_start_ba) {
ni->backup_table_ba = tmp_table_start_ba;
nlog_table_creation(ni, false, tmp_table_start_ba,
tmp_table_end_ba);
return true;
}
/* Adjust mapping_blocks_off */
ni->mapping_blocks_ba = main_table_end_ba;
/* Try to reserve spare blocks for new main info table */
success = nmbm_try_reserve_blocks(ni, main_table_end_ba, &write_ba,
ni->info_table_spare_blocks, 0,
ni->mapping_blocks_top_ba -
info_table_erasesize);
if (!success) {
/* There is no spare block. Only main table exists. */
nlog_err(ni, "No room for backup info table\n");
ni->backup_table_ba = 0;
return true;
}
/* Write new backup info table. */
while (write_ba >= main_table_end_ba) {
success = nmbm_write_info_table(ni, write_ba,
ni->mapping_blocks_top_ba,
&tmp_table_start_ba,
&tmp_table_end_ba);
if (success)
break;
write_ba--;
}
if (!success) {
nlog_err(ni, "No room for backup info table\n");
ni->backup_table_ba = 0;
return true;
}
/* Backup info table has been successfully written, record its offset */
ni->backup_table_ba = tmp_table_start_ba;
/* Adjust mapping_blocks_off */
ni->mapping_blocks_ba = tmp_table_end_ba;
/* Erase spare blocks of main table to clean possible interference data */
nmbm_erase_range(ni, main_table_end_ba, ni->backup_table_ba);
nlog_table_creation(ni, false, tmp_table_start_ba, tmp_table_end_ba);
return true;
}
/*
* nmbm_update_info_table_once - Update info table once
* @ni: NMBM instance structure
* @force: force update
*
* Update both main and backup info table. Return true if at least one info
* table has been successfully written.
* This function only try to update info table once regard less of the result.
*/
static bool nmbm_update_info_table_once(struct nmbm_instance *ni, bool force)
{
uint32_t table_start_ba, table_end_ba;
uint32_t main_table_limit;
bool success;
/* Do nothing if there is no change */
if (!nmbm_generate_info_table_cache(ni) && !force)
return true;
/* Check whether both two tables exist */
if (!ni->backup_table_ba) {
main_table_limit = ni->mapping_blocks_top_ba;
goto write_main_table;
}
/*
* Write backup info table in its current range.
* Note that limit is set to mapping_blocks_top_off to provide as many
* spare blocks as possible for the backup table. If at last
* unmapped blocks are used by backup table, mapping_blocks_off will
* be adjusted.
*/
success = nmbm_write_info_table(ni, ni->backup_table_ba,
ni->mapping_blocks_top_ba,
&table_start_ba, &table_end_ba);
if (!success) {
/*
* There is nothing to do if failed to write backup table.
* Write the main table now.
*/
nlog_err(ni, "No room for backup table\n");
ni->mapping_blocks_ba = ni->backup_table_ba;
ni->backup_table_ba = 0;
main_table_limit = ni->mapping_blocks_top_ba;
goto write_main_table;
}
/* Backup table is successfully written, record its offset */
ni->backup_table_ba = table_start_ba;
/* Adjust mapping_blocks_off */
ni->mapping_blocks_ba = table_end_ba;
nmbm_mark_tables_clean(ni);
/* The normal limit of main table */
main_table_limit = ni->backup_table_ba;
nlog_table_update(ni, false, table_start_ba, table_end_ba);
write_main_table:
if (!ni->main_table_ba)
goto rebuild_tables;
/* Write main info table in its current range */
success = nmbm_write_info_table(ni, ni->main_table_ba,
main_table_limit, &table_start_ba,
&table_end_ba);
if (!success) {
/* If failed to write main table, go rescue procedure */
if (!ni->backup_table_ba)
goto rebuild_tables;
return nmbm_rescue_main_info_table(ni);
}
/* Main info table is successfully written, record its offset */
ni->main_table_ba = table_start_ba;
/* Adjust mapping_blocks_off */
if (!ni->backup_table_ba)
ni->mapping_blocks_ba = table_end_ba;
nmbm_mark_tables_clean(ni);
nlog_table_update(ni, true, table_start_ba, table_end_ba);
return true;
rebuild_tables:
return nmbm_rebuild_info_table(ni);
}
/*
* nmbm_update_info_table - Update info table
* @ni: NMBM instance structure
*
* Update both main and backup info table. Return true if at least one table
* has been successfully written.
* This function will try to update info table repeatedly until no new bad
* block found during updating.
*/
static bool nmbm_update_info_table(struct nmbm_instance *ni)
{
bool success;
if (ni->protected)
return true;
while (ni->block_state_changed || ni->block_mapping_changed) {
success = nmbm_update_info_table_once(ni, false);
if (!success) {
nlog_err(ni, "Failed to update info table\n");
return false;
}
}
return true;
}
/*
* nmbm_map_block - Map a bad block to a unused spare block
* @ni: NMBM instance structure
* @lb: logic block addr to map
*/
static bool nmbm_map_block(struct nmbm_instance *ni, uint32_t lb)
{
uint32_t pb;
bool success;
if (ni->mapping_blocks_ba == ni->mapping_blocks_top_ba) {
nlog_warn(ni, "No spare unmapped blocks.\n");
return false;
}
success = nmbm_block_walk(ni, false, ni->mapping_blocks_top_ba, &pb, 0,
ni->mapping_blocks_ba);
if (!success) {
nlog_warn(ni, "No spare unmapped blocks.\n");
nmbm_update_info_table(ni);
ni->mapping_blocks_top_ba = ni->mapping_blocks_ba;
return false;
}
ni->block_mapping[lb] = pb;
ni->mapping_blocks_top_ba--;
ni->block_mapping_changed++;
nlog_info(ni, "Logic block %u mapped to physical block %u\n", lb, pb);
return true;
}
/*
* nmbm_create_info_table - Create info table(s)
* @ni: NMBM instance structure
*
* This function assumes that the chip has no existing info table(s)
*/
static bool nmbm_create_info_table(struct nmbm_instance *ni)
{
uint32_t lb;
bool success;
/* Set initial mapping_blocks_top_off */
success = nmbm_block_walk(ni, false, ni->signature_ba,
&ni->mapping_blocks_top_ba, 1,
ni->mgmt_start_ba);
if (!success) {
nlog_err(ni, "No room for spare blocks\n");
return false;
}
/* Generate info table cache */
nmbm_generate_info_table_cache(ni);
/* Write info table */
success = nmbm_rebuild_info_table(ni);
if (!success) {
nlog_err(ni, "Failed to build info tables\n");
return false;
}
/* Remap bad block(s) at end of data area */
for (lb = ni->data_block_count; lb < ni->mgmt_start_ba; lb++) {
success = nmbm_map_block(ni, lb);
if (!success)
break;
ni->data_block_count++;
}
/* If state table and/or mapping table changed, update info table. */
success = nmbm_update_info_table(ni);
if (!success)
return false;
return true;
}
/*
* nmbm_create_new - Create NMBM on a new chip
* @ni: NMBM instance structure
*/
static bool nmbm_create_new(struct nmbm_instance *ni)
{
bool success;
/* Determine the boundary of management blocks */
ni->mgmt_start_ba = ni->block_count * (NMBM_MGMT_DIV - ni->max_ratio) / NMBM_MGMT_DIV;
if (ni->max_reserved_blocks && ni->block_count - ni->mgmt_start_ba > ni->max_reserved_blocks)
ni->mgmt_start_ba = ni->block_count - ni->max_reserved_blocks;
nlog_info(ni, "NMBM management region starts at block %u [0x%08llx]\n",
ni->mgmt_start_ba, ba2addr(ni, ni->mgmt_start_ba));
/* Fill block state table & mapping table */
nmbm_scan_badblocks(ni);
nmbm_build_mapping_table(ni);
/* Write signature */
ni->signature.header.magic = NMBM_MAGIC_SIGNATURE;
ni->signature.header.version = NMBM_VER;
ni->signature.header.size = sizeof(ni->signature);
ni->signature.nand_size = bmtd.total_blks << bmtd.blk_shift;
ni->signature.block_size = bmtd.blk_size;
ni->signature.page_size = bmtd.pg_size;
ni->signature.spare_size = bmtd.mtd->oobsize;
ni->signature.mgmt_start_pb = ni->mgmt_start_ba;
ni->signature.max_try_count = NMBM_TRY_COUNT;
nmbm_update_checksum(&ni->signature.header);
success = nmbm_write_signature(ni, ni->mgmt_start_ba,
&ni->signature, &ni->signature_ba);
if (!success) {
nlog_err(ni, "Failed to write signature to a proper offset\n");
return false;
}
nlog_info(ni, "Signature has been written to block %u [0x%08llx]\n",
ni->signature_ba, ba2addr(ni, ni->signature_ba));
/* Write info table(s) */
success = nmbm_create_info_table(ni);
if (success) {
nlog_info(ni, "NMBM has been successfully created\n");
return true;
}
return false;
}
/*
* nmbm_check_info_table_header - Check if a info table header is valid
* @ni: NMBM instance structure
* @data: pointer to the info table header
*/
static bool nmbm_check_info_table_header(struct nmbm_instance *ni, void *data)
{
struct nmbm_info_table_header *ifthdr = data;
if (ifthdr->header.magic != NMBM_MAGIC_INFO_TABLE)
return false;
if (ifthdr->header.size != ni->info_table_size)
return false;
if (ifthdr->mapping_table_off - ifthdr->state_table_off < ni->state_table_size)
return false;
if (ni->info_table_size - ifthdr->mapping_table_off < ni->mapping_table_size)
return false;
return true;
}
/*
* nmbm_check_info_table - Check if a whole info table is valid
* @ni: NMBM instance structure
* @start_ba: start block address of this table
* @end_ba: end block address of this table
* @data: pointer to the info table header
* @mapping_blocks_top_ba: return the block address of top remapped block
*/
static bool nmbm_check_info_table(struct nmbm_instance *ni, uint32_t start_ba,
uint32_t end_ba, void *data,
uint32_t *mapping_blocks_top_ba)
{
struct nmbm_info_table_header *ifthdr = data;
int32_t *block_mapping = (int32_t *)((uintptr_t)data + ifthdr->mapping_table_off);
u32 *block_state = (u32 *)((uintptr_t)data + ifthdr->state_table_off);
uint32_t minimum_mapping_pb = ni->signature_ba;
uint32_t ba;
for (ba = 0; ba < ni->data_block_count; ba++) {
if ((block_mapping[ba] >= ni->data_block_count && block_mapping[ba] < end_ba) ||
block_mapping[ba] == ni->signature_ba)
return false;
if (block_mapping[ba] >= end_ba && block_mapping[ba] < minimum_mapping_pb)
minimum_mapping_pb = block_mapping[ba];
}
for (ba = start_ba; ba < end_ba; ba++) {
if (nmbm_get_block_state(ni, ba) != BLOCK_ST_GOOD)
continue;
if (nmbm_get_block_state_raw(block_state, ba) != BLOCK_ST_GOOD)
return false;
}
*mapping_blocks_top_ba = minimum_mapping_pb - 1;
return true;
}
/*
* nmbm_try_load_info_table - Try to load info table from a address
* @ni: NMBM instance structure
* @ba: start block address of the info table
* @eba: return the block address after end of the table
* @write_count: return the write count of this table
* @mapping_blocks_top_ba: return the block address of top remapped block
* @table_loaded: used to record whether ni->info_table has valid data
*/
static bool nmbm_try_load_info_table(struct nmbm_instance *ni, uint32_t ba,
uint32_t *eba, uint32_t *write_count,
uint32_t *mapping_blocks_top_ba,
bool table_loaded)
{
struct nmbm_info_table_header *ifthdr = (void *)ni->info_table_cache;
uint8_t *off = ni->info_table_cache;
uint32_t limit = ba + size2blk(ni, ni->info_table_size);
uint32_t start_ba = 0, chunksize, sizeremain = ni->info_table_size;
bool success, checkhdr = true;
int ret;
while (sizeremain && ba < limit) {
if (nmbm_get_block_state(ni, ba) != BLOCK_ST_GOOD)
goto next_block;
if (nmbm_check_bad_phys_block(ni, ba)) {
nmbm_set_block_state(ni, ba, BLOCK_ST_BAD);
goto next_block;
}
chunksize = sizeremain;
if (chunksize > bmtd.blk_size)
chunksize = bmtd.blk_size;
/* Assume block with ECC error has no info table data */
ret = nmbn_read_data(ni, ba2addr(ni, ba), off, chunksize);
if (ret < 0)
goto skip_bad_block;
else if (ret > 0)
return false;
if (checkhdr) {
success = nmbm_check_info_table_header(ni, off);
if (!success)
return false;
start_ba = ba;
checkhdr = false;
}
off += chunksize;
sizeremain -= chunksize;
goto next_block;
skip_bad_block:
/* Only mark bad in memory */
nmbm_set_block_state(ni, ba, BLOCK_ST_BAD);
next_block:
ba++;
}
if (sizeremain)
return false;
success = nmbm_check_header(ni->info_table_cache, ni->info_table_size);
if (!success)
return false;
*eba = ba;
*write_count = ifthdr->write_count;
success = nmbm_check_info_table(ni, start_ba, ba, ni->info_table_cache,
mapping_blocks_top_ba);
if (!success)
return false;
if (!table_loaded || ifthdr->write_count > ni->info_table.write_count) {
memcpy(&ni->info_table, ifthdr, sizeof(ni->info_table));
memcpy(ni->block_state,
(uint8_t *)ifthdr + ifthdr->state_table_off,
ni->state_table_size);
memcpy(ni->block_mapping,
(uint8_t *)ifthdr + ifthdr->mapping_table_off,
ni->mapping_table_size);
ni->info_table.write_count = ifthdr->write_count;
}
return true;
}
/*
* nmbm_search_info_table - Search info table from specific address
* @ni: NMBM instance structure
* @ba: start block address to search
* @limit: highest block address allowed for searching
* @table_start_ba: return the start block address of this table
* @table_end_ba: return the block address after end of this table
* @write_count: return the write count of this table
* @mapping_blocks_top_ba: return the block address of top remapped block
* @table_loaded: used to record whether ni->info_table has valid data
*/
static bool nmbm_search_info_table(struct nmbm_instance *ni, uint32_t ba,
uint32_t limit, uint32_t *table_start_ba,
uint32_t *table_end_ba,
uint32_t *write_count,
uint32_t *mapping_blocks_top_ba,
bool table_loaded)
{
bool success;
while (ba < limit - size2blk(ni, ni->info_table_size)) {
success = nmbm_try_load_info_table(ni, ba, table_end_ba,
write_count,
mapping_blocks_top_ba,
table_loaded);
if (success) {
*table_start_ba = ba;
return true;
}
ba++;
}
return false;
}
/*
* nmbm_load_info_table - Load info table(s) from a chip
* @ni: NMBM instance structure
* @ba: start block address to search info table
* @limit: highest block address allowed for searching
*/
static bool nmbm_load_info_table(struct nmbm_instance *ni, uint32_t ba,
uint32_t limit)
{
uint32_t main_table_end_ba, backup_table_end_ba, table_end_ba;
uint32_t main_mapping_blocks_top_ba, backup_mapping_blocks_top_ba;
uint32_t main_table_write_count, backup_table_write_count;
uint32_t i;
bool success;
/* Set initial value */
ni->main_table_ba = 0;
ni->backup_table_ba = 0;
ni->info_table.write_count = 0;
ni->mapping_blocks_top_ba = ni->signature_ba - 1;
ni->data_block_count = ni->signature.mgmt_start_pb;
/* Find first info table */
success = nmbm_search_info_table(ni, ba, limit, &ni->main_table_ba,
&main_table_end_ba, &main_table_write_count,
&main_mapping_blocks_top_ba, false);
if (!success) {
nlog_warn(ni, "No valid info table found\n");
return false;
}
table_end_ba = main_table_end_ba;
nlog_table_found(ni, true, main_table_write_count, ni->main_table_ba,
main_table_end_ba);
/* Find second info table */
success = nmbm_search_info_table(ni, main_table_end_ba, limit,
&ni->backup_table_ba, &backup_table_end_ba,
&backup_table_write_count, &backup_mapping_blocks_top_ba, true);
if (!success) {
nlog_warn(ni, "Second info table not found\n");
} else {
table_end_ba = backup_table_end_ba;
nlog_table_found(ni, false, backup_table_write_count,
ni->backup_table_ba, backup_table_end_ba);
}
/* Pick mapping_blocks_top_ba */
if (!ni->backup_table_ba) {
ni->mapping_blocks_top_ba= main_mapping_blocks_top_ba;
} else {
if (main_table_write_count >= backup_table_write_count)
ni->mapping_blocks_top_ba = main_mapping_blocks_top_ba;
else
ni->mapping_blocks_top_ba = backup_mapping_blocks_top_ba;
}
/* Set final mapping_blocks_ba */
ni->mapping_blocks_ba = table_end_ba;
/* Set final data_block_count */
for (i = ni->signature.mgmt_start_pb; i > 0; i--) {
if (ni->block_mapping[i - 1] >= 0) {
ni->data_block_count = i;
break;
}
}
/* Regenerate the info table cache from the final selected info table */
nmbm_generate_info_table_cache(ni);
/*
* If only one table exists, try to write another table.
* If two tables have different write count, try to update info table
*/
if (!ni->backup_table_ba) {
success = nmbm_rescue_single_info_table(ni);
} else if (main_table_write_count != backup_table_write_count) {
/* Mark state & mapping tables changed */
ni->block_state_changed = 1;
ni->block_mapping_changed = 1;
success = nmbm_update_single_info_table(ni,
main_table_write_count < backup_table_write_count);
} else {
success = true;
}
/*
* If there is no spare unmapped blocks, or still only one table
* exists, set the chip to read-only
*/
if (ni->mapping_blocks_ba == ni->mapping_blocks_top_ba) {
nlog_warn(ni, "No spare unmapped blocks. Device is now read-only\n");
ni->protected = 1;
} else if (!success) {
nlog_warn(ni, "Only one info table found. Device is now read-only\n");
ni->protected = 1;
}
return true;
}
/*
* nmbm_load_existing - Load NMBM from a new chip
* @ni: NMBM instance structure
*/
static bool nmbm_load_existing(struct nmbm_instance *ni)
{
bool success;
/* Calculate the boundary of management blocks */
ni->mgmt_start_ba = ni->signature.mgmt_start_pb;
nlog_debug(ni, "NMBM management region starts at block %u [0x%08llx]\n",
ni->mgmt_start_ba, ba2addr(ni, ni->mgmt_start_ba));
/* Look for info table(s) */
success = nmbm_load_info_table(ni, ni->mgmt_start_ba,
ni->signature_ba);
if (success) {
nlog_info(ni, "NMBM has been successfully attached\n");
return true;
}
if (!ni->force_create) {
printk("not creating NMBM table\n");
return false;
}
/* Fill block state table & mapping table */
nmbm_scan_badblocks(ni);
nmbm_build_mapping_table(ni);
/* Write info table(s) */
success = nmbm_create_info_table(ni);
if (success) {
nlog_info(ni, "NMBM has been successfully created\n");
return true;
}
return false;
}
/*
* nmbm_find_signature - Find signature in the lower NAND chip
* @ni: NMBM instance structure
* @signature_ba: used for storing block address of the signature
* @signature_ba: return the actual block address of signature block
*
* Find a valid signature from a specific range in the lower NAND chip,
* from bottom (highest address) to top (lowest address)
*
* Return true if found.
*/
static bool nmbm_find_signature(struct nmbm_instance *ni,
struct nmbm_signature *signature,
uint32_t *signature_ba)
{
struct nmbm_signature sig;
uint64_t off, addr;
uint32_t block_count, ba, limit;
bool success;
int ret;
/* Calculate top and bottom block address */
block_count = bmtd.total_blks;
ba = block_count;
limit = (block_count / NMBM_MGMT_DIV) * (NMBM_MGMT_DIV - ni->max_ratio);
if (ni->max_reserved_blocks && block_count - limit > ni->max_reserved_blocks)
limit = block_count - ni->max_reserved_blocks;
while (ba >= limit) {
ba--;
addr = ba2addr(ni, ba);
if (nmbm_check_bad_phys_block(ni, ba))
continue;
/* Check every page.
* As long as at leaset one page contains valid signature,
* the block is treated as a valid signature block.
*/
for (off = 0; off < bmtd.blk_size;
off += bmtd.pg_size) {
ret = nmbn_read_data(ni, addr + off, &sig,
sizeof(sig));
if (ret)
continue;
/* Check for header size and checksum */
success = nmbm_check_header(&sig, sizeof(sig));
if (!success)
continue;
/* Check for header magic */
if (sig.header.magic == NMBM_MAGIC_SIGNATURE) {
/* Found it */
memcpy(signature, &sig, sizeof(sig));
*signature_ba = ba;
return true;
}
}
};
return false;
}
/*
* nmbm_calc_structure_size - Calculate the instance structure size
* @nld: NMBM lower device structure
*/
static size_t nmbm_calc_structure_size(void)
{
uint32_t state_table_size, mapping_table_size, info_table_size;
uint32_t block_count;
block_count = bmtd.total_blks;
/* Calculate info table size */
state_table_size = ((block_count + NMBM_BITMAP_BLOCKS_PER_UNIT - 1) /
NMBM_BITMAP_BLOCKS_PER_UNIT) * NMBM_BITMAP_UNIT_SIZE;
mapping_table_size = block_count * sizeof(int32_t);
info_table_size = ALIGN(sizeof(struct nmbm_info_table_header),
bmtd.pg_size);
info_table_size += ALIGN(state_table_size, bmtd.pg_size);
info_table_size += ALIGN(mapping_table_size, bmtd.pg_size);
return info_table_size + state_table_size + mapping_table_size +
sizeof(struct nmbm_instance);
}
/*
* nmbm_init_structure - Initialize members of instance structure
* @ni: NMBM instance structure
*/
static void nmbm_init_structure(struct nmbm_instance *ni)
{
uint32_t pages_per_block, blocks_per_chip;
uintptr_t ptr;
pages_per_block = bmtd.blk_size / bmtd.pg_size;
blocks_per_chip = bmtd.total_blks;
ni->rawpage_size = bmtd.pg_size + bmtd.mtd->oobsize;
ni->rawblock_size = pages_per_block * ni->rawpage_size;
ni->rawchip_size = blocks_per_chip * ni->rawblock_size;
/* Calculate number of block this chip */
ni->block_count = blocks_per_chip;
/* Calculate info table size */
ni->state_table_size = ((ni->block_count + NMBM_BITMAP_BLOCKS_PER_UNIT - 1) /
NMBM_BITMAP_BLOCKS_PER_UNIT) * NMBM_BITMAP_UNIT_SIZE;
ni->mapping_table_size = ni->block_count * sizeof(*ni->block_mapping);
ni->info_table_size = ALIGN(sizeof(ni->info_table),
bmtd.pg_size);
ni->info_table.state_table_off = ni->info_table_size;
ni->info_table_size += ALIGN(ni->state_table_size,
bmtd.pg_size);
ni->info_table.mapping_table_off = ni->info_table_size;
ni->info_table_size += ALIGN(ni->mapping_table_size,
bmtd.pg_size);
ni->info_table_spare_blocks = nmbm_get_spare_block_count(
size2blk(ni, ni->info_table_size));
/* Assign memory to members */
ptr = (uintptr_t)ni + sizeof(*ni);
ni->info_table_cache = (void *)ptr;
ptr += ni->info_table_size;
ni->block_state = (void *)ptr;
ptr += ni->state_table_size;
ni->block_mapping = (void *)ptr;
ptr += ni->mapping_table_size;
ni->page_cache = bmtd.data_buf;
/* Initialize block state table */
ni->block_state_changed = 0;
memset(ni->block_state, 0xff, ni->state_table_size);
/* Initialize block mapping table */
ni->block_mapping_changed = 0;
}
/*
* nmbm_attach - Attach to a lower device
* @ni: NMBM instance structure
*/
static int nmbm_attach(struct nmbm_instance *ni)
{
bool success;
if (!ni)
return -EINVAL;
/* Initialize NMBM instance */
nmbm_init_structure(ni);
success = nmbm_find_signature(ni, &ni->signature, &ni->signature_ba);
if (!success) {
if (!ni->force_create) {
nlog_err(ni, "Signature not found\n");
return -ENODEV;
}
success = nmbm_create_new(ni);
if (!success)
return -ENODEV;
return 0;
}
nlog_info(ni, "Signature found at block %u [0x%08llx]\n",
ni->signature_ba, ba2addr(ni, ni->signature_ba));
if (ni->signature.header.version != NMBM_VER) {
nlog_err(ni, "NMBM version %u.%u is not supported\n",
NMBM_VERSION_MAJOR_GET(ni->signature.header.version),
NMBM_VERSION_MINOR_GET(ni->signature.header.version));
return -EINVAL;
}
if (ni->signature.nand_size != bmtd.total_blks << bmtd.blk_shift ||
ni->signature.block_size != bmtd.blk_size ||
ni->signature.page_size != bmtd.pg_size ||
ni->signature.spare_size != bmtd.mtd->oobsize) {
nlog_err(ni, "NMBM configuration mismatch\n");
return -EINVAL;
}
success = nmbm_load_existing(ni);
if (!success)
return -ENODEV;
return 0;
}
static bool remap_block_nmbm(u16 block, u16 mapped_block, int copy_len)
{
struct nmbm_instance *ni = bmtd.ni;
int new_block;
if (block >= ni->data_block_count)
return false;
nmbm_set_block_state(ni, mapped_block, BLOCK_ST_BAD);
if (!nmbm_map_block(ni, block))
return false;
new_block = ni->block_mapping[block];
bbt_nand_erase(new_block);
if (copy_len > 0)
bbt_nand_copy(new_block, mapped_block, copy_len);
nmbm_update_info_table(ni);
return true;
}
static int get_mapping_block_index_nmbm(int block)
{
struct nmbm_instance *ni = bmtd.ni;
if (block >= ni->data_block_count)
return -1;
return ni->block_mapping[block];
}
static int mtk_bmt_init_nmbm(struct device_node *np)
{
struct nmbm_instance *ni;
int ret;
ni = kzalloc(nmbm_calc_structure_size(), GFP_KERNEL);
if (!ni)
return -ENOMEM;
bmtd.ni = ni;
if (of_property_read_u32(np, "mediatek,bmt-max-ratio", &ni->max_ratio))
ni->max_ratio = 1;
if (of_property_read_u32(np, "mediatek,bmt-max-reserved-blocks",
&ni->max_reserved_blocks))
ni->max_reserved_blocks = 256;
if (of_property_read_bool(np, "mediatek,empty-page-ecc-protected"))
ni->empty_page_ecc_ok = true;
if (of_property_read_bool(np, "mediatek,bmt-force-create"))
ni->force_create = true;
ret = nmbm_attach(ni);
if (ret)
goto out;
bmtd.mtd->size = ni->data_block_count << bmtd.blk_shift;
return 0;
out:
kfree(ni);
bmtd.ni = NULL;
return ret;
}
static int mtk_bmt_debug_nmbm(void *data, u64 val)
{
struct nmbm_instance *ni = bmtd.ni;
int i;
switch (val) {
case 0:
for (i = 1; i < ni->data_block_count; i++) {
if (ni->block_mapping[i] < ni->mapping_blocks_ba)
continue;
printk("remap [%x->%x]\n", i, ni->block_mapping[i]);
}
}
return 0;
}
static void unmap_block_nmbm(u16 block)
{
struct nmbm_instance *ni = bmtd.ni;
int start, offset;
int new_block;
if (block >= ni->data_block_count)
return;
start = block;
offset = 0;
while (ni->block_mapping[start] >= ni->mapping_blocks_ba) {
start--;
offset++;
if (start < 0)
return;
}
if (!offset)
return;
new_block = ni->block_mapping[start] + offset;
nmbm_set_block_state(ni, new_block, BLOCK_ST_GOOD);
ni->block_mapping[block] = new_block;
ni->block_mapping_changed++;
new_block = ni->signature_ba - 1;
for (block = 0; block < ni->data_block_count; block++) {
int cur = ni->block_mapping[block];
if (cur < ni->mapping_blocks_ba)
continue;
if (cur <= new_block)
new_block = cur - 1;
}
ni->mapping_blocks_top_ba = new_block;
nmbm_update_info_table(ni);
}
const struct mtk_bmt_ops mtk_bmt_nmbm_ops = {
.init = mtk_bmt_init_nmbm,
.remap_block = remap_block_nmbm,
.unmap_block = unmap_block_nmbm,
.get_mapping_block = get_mapping_block_index_nmbm,
.debug = mtk_bmt_debug_nmbm,
};